2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author sgazeos@gmail.com
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <ops/declarable/helpers/fake_quantization.h>
|
|
|
|
#include <NDArrayFactory.h>
|
|
|
|
|
|
|
|
namespace nd4j {
|
|
|
|
namespace ops {
|
|
|
|
namespace helpers {
|
2019-09-11 20:04:43 +02:00
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// fakeQuantWithMinMaxVars_
|
|
|
|
// input - input tensor
|
|
|
|
// min - min scalar tensor
|
|
|
|
// max - max scalar tensor
|
|
|
|
// numBits - (default 16bit)
|
|
|
|
// narrowed - shrink is true
|
|
|
|
// output - output tensor
|
|
|
|
//
|
2019-06-06 14:21:15 +02:00
|
|
|
template <typename T>
|
2019-10-10 15:40:56 +02:00
|
|
|
static __host__ __device__ void Nudge(T min, T max, int quant_min, int quant_max, T* scale, T* nudged_min, T* nudged_max) {
|
2019-10-10 13:00:49 +02:00
|
|
|
T quant_max_float = static_cast<T>(quant_max);
|
|
|
|
T quant_min_float = static_cast<T>(quant_min);
|
|
|
|
*scale = (max - min) / (quant_max_float - quant_min_float);
|
|
|
|
auto zero_point_from_min = quant_min_float - min / *scale;
|
|
|
|
uint16_t const nudged_zero_point = [zero_point_from_min, quant_min, quant_max, quant_max_float, quant_min_float] {
|
2019-09-11 20:04:43 +02:00
|
|
|
if (zero_point_from_min < quant_min_float) {
|
2019-10-10 13:00:49 +02:00
|
|
|
return static_cast<uint16_t>(quant_min);
|
2019-09-11 20:04:43 +02:00
|
|
|
}
|
|
|
|
if (zero_point_from_min > quant_max_float) {
|
2019-10-10 13:00:49 +02:00
|
|
|
return static_cast<uint16_t>(quant_max);
|
2019-09-11 20:04:43 +02:00
|
|
|
}
|
2019-10-10 13:00:49 +02:00
|
|
|
return nd4j::math::nd4j_round<T,uint16_t>(zero_point_from_min);
|
2019-06-06 14:21:15 +02:00
|
|
|
}();
|
2019-10-10 13:00:49 +02:00
|
|
|
*nudged_min = (quant_min_float - nudged_zero_point) * (*scale);
|
|
|
|
*nudged_max = (quant_max_float - nudged_zero_point) * (*scale);
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-10-10 13:00:49 +02:00
|
|
|
template <typename T>
|
|
|
|
void fakeQuantWithMinMaxVars_(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
|
|
|
int lowIntBound = narrowed?1:0;
|
|
|
|
int upperIntBound = (1 << numBits) - 1;
|
|
|
|
min->syncToHost();
|
|
|
|
max->syncToHost();
|
|
|
|
T scale, nudged_min, nudged_max;
|
|
|
|
Nudge(min->t<T>(0), max->t<T>(0), lowIntBound, upperIntBound, &scale, &nudged_min, &nudged_max);
|
2019-09-11 20:04:43 +02:00
|
|
|
|
2019-10-10 13:00:49 +02:00
|
|
|
auto wiseMinMaxAndSoOn = LAMBDA_T(x, nudged_min, nudged_max, scale) {
|
|
|
|
T val = x;
|
2019-06-06 14:21:15 +02:00
|
|
|
if (x < nudged_min) {
|
2019-10-10 13:00:49 +02:00
|
|
|
val = nudged_min;
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-10-10 13:00:49 +02:00
|
|
|
else if (x > nudged_max) {
|
|
|
|
val = nudged_max;
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-10-10 13:00:49 +02:00
|
|
|
else
|
|
|
|
val = x;
|
|
|
|
return (math::nd4j_floor<T,T>((val - nudged_min) / scale + T(0.5)) * scale + nudged_min);
|
2019-06-06 14:21:15 +02:00
|
|
|
};
|
2019-09-11 20:04:43 +02:00
|
|
|
|
2019-10-10 13:00:49 +02:00
|
|
|
input->applyLambda(wiseMinMaxAndSoOn, output);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
2019-10-10 14:44:50 +02:00
|
|
|
template <typename T>
|
2019-10-10 15:40:56 +02:00
|
|
|
static __global__ void fakeQuantWithMinMaxKernel(T* input, Nd4jLong* inputShape, T* min, T* max,
|
|
|
|
int lowIntBound, int upperIntBound, Nd4jLong channels,
|
|
|
|
T* output, Nd4jLong* outputShape, Nd4jLong length) {
|
2019-10-10 15:51:29 +02:00
|
|
|
__shared__ int block;
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
block = length / channels;
|
|
|
|
}
|
|
|
|
__syncthreads();
|
2019-10-10 14:44:50 +02:00
|
|
|
|
2019-10-10 15:40:56 +02:00
|
|
|
for (auto i = blockIdx.x; i < (int)channels; i += gridDim.x) {
|
|
|
|
T scale, nudged_min, nudged_max;
|
|
|
|
Nudge(min[i], max[i], lowIntBound, upperIntBound, &scale, &nudged_min, &nudged_max);
|
2019-10-10 14:44:50 +02:00
|
|
|
//auto wiseMinMaxAndSoOn = LAMBDA_T(x, nudged_min, nudged_max, scale) {
|
2019-10-10 15:51:29 +02:00
|
|
|
for (auto e = threadIdx.x; e < block; e += blockDim.x) {
|
|
|
|
T val = input[shape::getIndexOffset(e * channels + i, inputShape)];
|
2019-10-10 14:44:50 +02:00
|
|
|
if (val < nudged_min) {
|
|
|
|
val = nudged_min;
|
|
|
|
} else if (val > nudged_max) {
|
|
|
|
val = nudged_max;
|
|
|
|
}
|
2019-10-10 15:51:29 +02:00
|
|
|
output[shape::getIndexOffset(e* channels + i, outputShape)] = (math::nd4j_floor<T, T>((val - nudged_min) / scale + T(0.5)) * scale + nudged_min);
|
2019-10-10 14:44:50 +02:00
|
|
|
};
|
|
|
|
}
|
2019-10-10 15:40:56 +02:00
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
void fakeQuantWithMinMaxVarsPerChannel_(LaunchContext* context, NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
|
|
|
int lowIntBound = narrowed?1:0;
|
|
|
|
int upperIntBound = (1 << numBits) - 1;
|
|
|
|
auto channels = min->lengthOf();
|
|
|
|
auto length = input->lengthOf();
|
|
|
|
NDArray::prepareSpecialUse({output}, {min, max, input});
|
|
|
|
auto stream = context->getCudaStream();
|
|
|
|
T* inputBuf = input->dataBuffer()->specialAsT<T>();
|
|
|
|
T* outputBuf = output->dataBuffer()->specialAsT<T>();
|
|
|
|
T* minBuf = min->dataBuffer()->specialAsT<T>();
|
|
|
|
T* maxBuf = max->dataBuffer()->specialAsT<T>();
|
2019-10-10 15:51:29 +02:00
|
|
|
fakeQuantWithMinMaxKernel<<<128, 256, 256, *stream>>>(inputBuf, input->specialShapeInfo(),
|
2019-10-10 15:40:56 +02:00
|
|
|
minBuf, maxBuf, lowIntBound, upperIntBound, channels, outputBuf, output->specialShapeInfo(), length);
|
|
|
|
NDArray::registerSpecialUse({output}, {min, max, input});
|
|
|
|
|
2019-10-10 14:44:50 +02:00
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
void fakeQuantWithMinMaxVars(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
|
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), fakeQuantWithMinMaxVars_, (input, min, max, numBits, narrowed, output), FLOAT_TYPES);
|
|
|
|
}
|
2019-10-10 15:40:56 +02:00
|
|
|
void fakeQuantWithMinMaxVarsPerChannel(LaunchContext* context, NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
|
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), fakeQuantWithMinMaxVarsPerChannel_, (context, input, min, max, numBits, narrowed, output), FLOAT_TYPES);
|
2019-10-08 18:00:41 +02:00
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
BUILD_SINGLE_TEMPLATE(template void fakeQuantWithMinMaxVars_, (NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output), FLOAT_TYPES);
|
2019-10-10 15:40:56 +02:00
|
|
|
BUILD_SINGLE_TEMPLATE(template void fakeQuantWithMinMaxVarsPerChannel_, (LaunchContext* context, NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output), FLOAT_TYPES);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|