cavis/libnd4j/include/ops/declarable/helpers/cuda/fake_quantization.cu

99 lines
3.7 KiB
Plaintext
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author sgazeos@gmail.com
//
#include <ops/declarable/helpers/fake_quantization.h>
#include <NDArrayFactory.h>
namespace nd4j {
namespace ops {
namespace helpers {
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// fakeQuantWithMinMaxVars_
// input - input tensor
// min - min scalar tensor
// max - max scalar tensor
// numBits - (default 16bit)
// narrowed - shrink is true
// output - output tensor
//
2019-06-06 14:21:15 +02:00
template <typename T>
void fakeQuantWithMinMaxVars_(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
int lowIntBound = narrowed?1:0;
int upperIntBound = 1 << numBits - 1;
min->syncToHost();
max->syncToHost();
2019-06-06 14:21:15 +02:00
const float quant_min_float = static_cast<float>(lowIntBound);
const float quant_max_float = static_cast<float>(upperIntBound);
T scale = (max->t<T>(0) - min->t<T>(0)) / (quant_max_float - quant_min_float);
const T zero_point_from_min = quant_min_float - min->t<T>(0) / scale;
2019-06-06 14:21:15 +02:00
const uint16_t nudged_zero_point = [zero_point_from_min, lowIntBound,
quant_min_float, upperIntBound,
quant_max_float] {
if (zero_point_from_min < quant_min_float) {
return static_cast<uint16_t>(lowIntBound);
}
if (zero_point_from_min > quant_max_float) {
return static_cast<uint16_t>(upperIntBound);
}
return static_cast<uint16_t>(roundf(zero_point_from_min));
2019-06-06 14:21:15 +02:00
}();
auto nudged_min = (quant_min_float - nudged_zero_point) * (scale);
auto nudged_max = (quant_max_float - nudged_zero_point) * (scale);
2019-06-06 14:21:15 +02:00
auto wiseMax = LAMBDA_T(x, nudged_min) {
if (x < nudged_min) {
return nudged_min;
}
return x;
};
2019-06-06 14:21:15 +02:00
auto wiseMin = LAMBDA_T(x, nudged_max) {
if (x > nudged_max) {
return nudged_max;
}
return x;
};
auto scaleTensor(*input);
auto clamped(*input);
2019-06-06 14:21:15 +02:00
scaleTensor.assign(scale);
input->applyLambda(wiseMin, &clamped);
2019-06-06 14:21:15 +02:00
clamped.applyLambda(wiseMax, output);
*output -= nudged_min;
2019-06-06 14:21:15 +02:00
(*output) /= scaleTensor;
(*output) += T(0.5f);
output->applyTransform(transform::Floor, nullptr, nullptr);
(*output) *= scaleTensor;
(*output) += nudged_min;
}
void fakeQuantWithMinMaxVars(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), fakeQuantWithMinMaxVars_, (input, min, max, numBits, narrowed, output), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void fakeQuantWithMinMaxVars_, (NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output), FLOAT_TYPES);
}
}
}