2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author sgazeos@gmail.com
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <ops/declarable/helpers/fake_quantization.h>
|
|
|
|
#include <NDArrayFactory.h>
|
|
|
|
|
|
|
|
namespace nd4j {
|
|
|
|
namespace ops {
|
|
|
|
namespace helpers {
|
2019-09-11 20:04:43 +02:00
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// fakeQuantWithMinMaxVars_
|
|
|
|
// input - input tensor
|
|
|
|
// min - min scalar tensor
|
|
|
|
// max - max scalar tensor
|
|
|
|
// numBits - (default 16bit)
|
|
|
|
// narrowed - shrink is true
|
|
|
|
// output - output tensor
|
|
|
|
//
|
2019-06-06 14:21:15 +02:00
|
|
|
template <typename T>
|
|
|
|
void fakeQuantWithMinMaxVars_(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
|
|
|
int lowIntBound = narrowed?1:0;
|
|
|
|
int upperIntBound = 1 << numBits - 1;
|
2019-09-11 20:04:43 +02:00
|
|
|
min->syncToHost();
|
|
|
|
max->syncToHost();
|
2019-06-06 14:21:15 +02:00
|
|
|
const float quant_min_float = static_cast<float>(lowIntBound);
|
|
|
|
const float quant_max_float = static_cast<float>(upperIntBound);
|
|
|
|
T scale = (max->t<T>(0) - min->t<T>(0)) / (quant_max_float - quant_min_float);
|
2019-09-11 20:04:43 +02:00
|
|
|
const T zero_point_from_min = quant_min_float - min->t<T>(0) / scale;
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
const uint16_t nudged_zero_point = [zero_point_from_min, lowIntBound,
|
|
|
|
quant_min_float, upperIntBound,
|
|
|
|
quant_max_float] {
|
2019-09-11 20:04:43 +02:00
|
|
|
if (zero_point_from_min < quant_min_float) {
|
|
|
|
return static_cast<uint16_t>(lowIntBound);
|
|
|
|
}
|
|
|
|
if (zero_point_from_min > quant_max_float) {
|
|
|
|
return static_cast<uint16_t>(upperIntBound);
|
|
|
|
}
|
|
|
|
return static_cast<uint16_t>(roundf(zero_point_from_min));
|
2019-06-06 14:21:15 +02:00
|
|
|
}();
|
|
|
|
|
|
|
|
auto nudged_min = (quant_min_float - nudged_zero_point) * (scale);
|
|
|
|
auto nudged_max = (quant_max_float - nudged_zero_point) * (scale);
|
2019-09-11 20:04:43 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto wiseMax = LAMBDA_T(x, nudged_min) {
|
|
|
|
if (x < nudged_min) {
|
|
|
|
return nudged_min;
|
|
|
|
}
|
|
|
|
return x;
|
|
|
|
};
|
2019-09-11 20:04:43 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto wiseMin = LAMBDA_T(x, nudged_max) {
|
|
|
|
if (x > nudged_max) {
|
|
|
|
return nudged_max;
|
|
|
|
}
|
|
|
|
return x;
|
|
|
|
};
|
2019-09-11 20:04:43 +02:00
|
|
|
|
|
|
|
auto scaleTensor(*input);
|
|
|
|
auto clamped(*input);
|
2019-06-06 14:21:15 +02:00
|
|
|
scaleTensor.assign(scale);
|
|
|
|
input->applyLambda(wiseMin, &clamped);
|
2019-09-11 20:04:43 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
clamped.applyLambda(wiseMax, output);
|
|
|
|
*output -= nudged_min;
|
2019-09-11 20:04:43 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
(*output) /= scaleTensor;
|
|
|
|
(*output) += T(0.5f);
|
|
|
|
output->applyTransform(transform::Floor, nullptr, nullptr);
|
|
|
|
(*output) *= scaleTensor;
|
|
|
|
(*output) += nudged_min;
|
|
|
|
}
|
|
|
|
|
|
|
|
void fakeQuantWithMinMaxVars(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
|
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), fakeQuantWithMinMaxVars_, (input, min, max, numBits, narrowed, output), FLOAT_TYPES);
|
|
|
|
}
|
2019-10-08 18:00:41 +02:00
|
|
|
void fakeQuantWithMinMaxVarsPerChannel(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
|
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), fakeQuantWithMinMaxVars_, (input, min, max, numBits, narrowed, output), FLOAT_TYPES);
|
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
BUILD_SINGLE_TEMPLATE(template void fakeQuantWithMinMaxVars_, (NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output), FLOAT_TYPES);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|