371 lines
19 KiB
Plaintext
371 lines
19 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
#include <ops/declarable/helpers/dynamic.h>
|
|
#include <helpers/PointersManager.h>
|
|
#include <helpers/ConstantTadHelper.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
|
|
template <typename X, typename Y>
|
|
static _CUDA_G void dynamicPartitionScalarKernel(const void *vx, const Nd4jLong *xShapeInfo, const void *vi, const Nd4jLong *iShapeInfo, void **vz, Nd4jLong **zShapeInfos, const Nd4jLong numOutputs) {
|
|
auto x = reinterpret_cast<const X*>(vx);
|
|
auto i = reinterpret_cast<const Y*>(vi);
|
|
auto xLength = shape::length(xShapeInfo);
|
|
auto iLength = shape::length(iShapeInfo);
|
|
|
|
extern __shared__ char shmem[];
|
|
__shared__ Y *rawIndices;
|
|
__shared__ Y *trueIndices;
|
|
|
|
if (threadIdx.x == 0) {
|
|
rawIndices = reinterpret_cast<Y*>(shmem);
|
|
trueIndices = rawIndices + blockDim.x;
|
|
}
|
|
__syncthreads();
|
|
|
|
// we run things in blocks, 1 partition per block of threads
|
|
for (Nd4jLong o = blockIdx.x; o < numOutputs; o += gridDim.x) {
|
|
auto z = reinterpret_cast<X*>(vz[o]);
|
|
|
|
auto zShapeInfo = zShapeInfos[o];
|
|
auto zLength = shape::length(zShapeInfo);
|
|
|
|
// iLimit should be multiple of blockDim.x
|
|
auto iLimit = iLength <= blockDim.x ? blockDim.x : (iLength + (blockDim.x - (iLength % blockDim.x)));
|
|
int cnt = 0;
|
|
|
|
for (Nd4jLong e = threadIdx.x; e < iLimit; e += blockDim.x) {
|
|
// load set of indices into shared memory
|
|
if (e < iLength)
|
|
rawIndices[threadIdx.x] = i[shape::getIndexOffset(e, iShapeInfo)];
|
|
__syncthreads();
|
|
|
|
// now we need to find out where our actual updates will be mapped
|
|
// TODO: this can be improved obviously, by using prefix-sum like approach
|
|
if (threadIdx.x == 0) {
|
|
for (int f = 0; f < blockDim.x; f++) {
|
|
if (rawIndices[f] == static_cast<Y>(o))
|
|
trueIndices[f] = cnt++;
|
|
else
|
|
trueIndices[f] = -1;
|
|
}
|
|
}
|
|
__syncthreads();
|
|
|
|
|
|
// doing actual update
|
|
if (e < iLength)
|
|
if (trueIndices[threadIdx.x] >= 0) {
|
|
z[trueIndices[threadIdx.x]] = x[shape::getIndexOffset(e, xShapeInfo)];
|
|
}
|
|
|
|
__syncthreads();
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename X, typename Y>
|
|
static _CUDA_G void dynamicPartitionTadKernel(const void *vx, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xTadOffsets, Nd4jLong xLength, const void *vindices, const Nd4jLong *iShapeInfo, Nd4jLong iLength, void **vz, Nd4jLong **zTadShapeInfos, Nd4jLong **zTadOffsets, Nd4jLong numOutputs) {
|
|
auto x = reinterpret_cast<const X*>(vx);
|
|
auto indices = reinterpret_cast<const Y*>(vindices);
|
|
|
|
// we run things in blocks, 1 partition per block of threads
|
|
for (int i = blockIdx.x; i < numOutputs; i += gridDim.x) {
|
|
auto z = reinterpret_cast<X*>(vz[i]);
|
|
|
|
// each thread has own counter for partitions
|
|
int outCnt = 0;
|
|
|
|
for (Nd4jLong e = 0; e < iLength; e++) {
|
|
if (indices[shape::getIndexOffset(e, iShapeInfo)] == i) {
|
|
auto dx = x + xTadOffsets[e];
|
|
auto dz = z + zTadOffsets[i][outCnt++];
|
|
|
|
for (int f = threadIdx.x; f < xLength; f += blockDim.x) {
|
|
dz[shape::getIndexOffset(f, zTadShapeInfos[i])] = dx[shape::getIndexOffset(f, xTadShapeInfo)];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename X, typename Y>
|
|
static void _dynamicPartitionFunctor(sd::LaunchContext * context, NDArray const* input, NDArray const* indices, std::vector<NDArray*>& outputList) {
|
|
std::vector<std::pair<NDArray *, int>> outputs(outputList.size());
|
|
int sourceDimsLen = input->rankOf() - indices->rankOf();
|
|
|
|
unsigned int outSize = outputList.size();
|
|
|
|
PointersManager pm(context, "dynamicPartition");
|
|
|
|
if (sourceDimsLen) { // non-linear case
|
|
std::vector<int> sourceDims(sourceDimsLen);
|
|
|
|
for (int i = sourceDimsLen; i > 0; i--)
|
|
sourceDims[sourceDimsLen - i] = input->rankOf() - i;
|
|
//compute tad array for given dimensions
|
|
auto packX = ConstantTadHelper::getInstance()->tadForDimensions(input->shapeInfo(), sourceDims);
|
|
|
|
std::vector<void *> outBuffers(outSize);
|
|
std::vector<const Nd4jLong *> tadShapes(outSize);
|
|
std::vector<const Nd4jLong *> tadOffsets(outSize);
|
|
std::vector<Nd4jLong> numTads(outSize);
|
|
// fill up dimensions array for before kernel
|
|
for (unsigned int i = 0; i < outSize; i++) {
|
|
outputs[i].first = outputList[i];
|
|
std::vector<int> outDims(outputs[i].first->rankOf() - 1);
|
|
|
|
int r = outputs[i].first->rankOf();
|
|
|
|
for (int k = 1; k < r; k++)
|
|
outDims[k - 1] = k;
|
|
|
|
auto packZ = ConstantTadHelper::getInstance()->tadForDimensions(outputList.at(i)->shapeInfo(), outDims);
|
|
|
|
outBuffers[i] = outputList.at(i)->specialBuffer();
|
|
tadShapes[i] = packZ.platformShapeInfo();
|
|
tadOffsets[i] = packZ.platformOffsets();
|
|
}
|
|
|
|
// we copy pointers to device
|
|
auto dOutBuffers = reinterpret_cast<void **>(pm.replicatePointer(outBuffers.data(), outBuffers.size() * sizeof(void *)));
|
|
auto dOutTadShapes = reinterpret_cast<Nd4jLong **>(pm.replicatePointer(tadShapes.data(), tadShapes.size() * sizeof(Nd4jLong *)));
|
|
auto dOutTadOffsets = reinterpret_cast<Nd4jLong **>(pm.replicatePointer(tadOffsets.data(), tadOffsets.size() * sizeof(Nd4jLong *)));
|
|
// run kernel on device
|
|
dynamicPartitionTadKernel<X,Y><<<256, 256, 1024, *context->getCudaStream()>>>(input->specialBuffer(), packX.platformShapeInfo(), packX.platformOffsets(), shape::length(packX.primaryShapeInfo()), indices->specialBuffer(), indices->specialShapeInfo(), indices->lengthOf(), dOutBuffers, dOutTadShapes, dOutTadOffsets, outSize);
|
|
|
|
} else { // linear case
|
|
auto numThreads = 256;
|
|
auto shmemSize = numThreads * sizeof(Y) * 2 + 1024;
|
|
|
|
std::vector<void *> outBuffers;
|
|
std::vector<const Nd4jLong *> outShapes;
|
|
|
|
for (auto v:outputList) {
|
|
outBuffers.emplace_back(v->specialBuffer());
|
|
outShapes.emplace_back(v->specialShapeInfo());
|
|
}
|
|
|
|
auto dOutBuffers = reinterpret_cast<void **>(pm.replicatePointer(outBuffers.data(), outBuffers.size() * sizeof(void *)));
|
|
auto dOutShapes = reinterpret_cast<Nd4jLong **>(pm.replicatePointer(outShapes.data(), outShapes.size() * sizeof(Nd4jLong *)));
|
|
|
|
dynamicPartitionScalarKernel<X,Y><<<256, numThreads, shmemSize, *context->getCudaStream()>>>(input->specialBuffer(), input->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), dOutBuffers, dOutShapes, outSize);
|
|
}
|
|
|
|
pm.synchronize();
|
|
}
|
|
|
|
|
|
template <typename X, typename Y>
|
|
static _CUDA_G void dynamicStitchScalarKernel(void **vx, Nd4jLong **xShapeInfos, void **vindices, Nd4jLong **iShapeInfos, int inputSize, void *vz, const Nd4jLong *zShapeInfo, Nd4jLong zLength) {
|
|
auto z = reinterpret_cast<X*>(vz);
|
|
|
|
for (int e = blockIdx.x; e < inputSize; e += gridDim.x) {
|
|
auto x = reinterpret_cast<X*>(vx[e]);
|
|
auto indices = reinterpret_cast<Y*>(vindices[e]);
|
|
|
|
auto xShapeInfo = xShapeInfos[e];
|
|
auto iShapeInfo = iShapeInfos[e];
|
|
|
|
auto iLength = shape::length(iShapeInfo);
|
|
|
|
for (int i = threadIdx.x; i < iLength; i += blockDim.x) {
|
|
auto idx = indices[shape::getIndexOffset(i, iShapeInfo)];
|
|
if (idx >= 0 && idx < zLength)
|
|
z[shape::getIndexOffset(idx, zShapeInfo)] = x[shape::getIndexOffset(i, xShapeInfo)];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename X, typename Y>
|
|
static _CUDA_G void dynamicStitchTadKernel(void **vx, Nd4jLong **xTadShapeInfos, Nd4jLong **xTadOffsets, void **vindices, Nd4jLong **iShapeInfos, int inputSize, void *vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zTadOffsets) {
|
|
auto bz = reinterpret_cast<X*>(vz);
|
|
|
|
for (int e = blockIdx.x; e < inputSize; e += gridDim.x) {
|
|
auto indices = reinterpret_cast<Y*>(vindices[e]);
|
|
auto iShapeInfo = iShapeInfos[e];
|
|
|
|
if (shape::isEmpty(iShapeInfo))
|
|
continue;
|
|
|
|
auto iLength = shape::length(iShapeInfo);
|
|
auto zLength = shape::length(zTadShapeInfo);
|
|
|
|
auto xShapeInfo = xTadShapeInfos[e];
|
|
auto xLength = shape::length(xShapeInfo);
|
|
|
|
for (int i = 0; i < iLength; i++) {
|
|
auto idx = indices[shape::getIndexOffset(i, iShapeInfo)];
|
|
|
|
auto z = bz + zTadOffsets[idx];
|
|
auto x = reinterpret_cast<X*>(vx[e]) + xTadOffsets[e][i];
|
|
|
|
for (int f = threadIdx.x; f < zLength; f += blockDim.x) {
|
|
z[shape::getIndexOffset(f, zTadShapeInfo)] = x[shape::getIndexOffset(f, xShapeInfo)];
|
|
}
|
|
|
|
__syncthreads();
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename X, typename Y>
|
|
static int _dynamicStitchFunctor(sd::LaunchContext * context, std::vector<NDArray*> const& inputs, std::vector<NDArray*> const& indices, NDArray* output){
|
|
|
|
int inputSize = inputs.size();
|
|
|
|
PointersManager pm(context, "dynamicStitch");
|
|
|
|
if (output->isVector()) {
|
|
std::vector<const void *> inputBuffers(inputSize);
|
|
std::vector<const Nd4jLong *> inputShapes(inputSize);
|
|
std::vector<const void *> indicesBuffers(inputSize);
|
|
std::vector<const Nd4jLong *> indicesShapes(inputSize);
|
|
|
|
for (int e = 0; e < inputSize; e++) {
|
|
inputBuffers[e] = inputs.at(e)->specialBuffer();
|
|
indicesBuffers[e] = indices.at(e)->specialBuffer();
|
|
|
|
inputShapes[e] = inputs.at(e)->specialShapeInfo();
|
|
indicesShapes[e] = indices.at(e)->specialShapeInfo();
|
|
}
|
|
|
|
// copying pointers to buffers to device
|
|
auto dInputBuffers = reinterpret_cast<void **>(pm.replicatePointer(inputBuffers.data(), inputSize * sizeof(void *)));
|
|
auto dIndicesBuffers = reinterpret_cast<void **>(pm.replicatePointer(indicesBuffers.data(), inputSize * sizeof(void *)));
|
|
auto dInputShapes = reinterpret_cast<Nd4jLong **>(pm.replicatePointer(inputShapes.data(), inputSize * sizeof(Nd4jLong *)));
|
|
auto dIndicesShapes = reinterpret_cast<Nd4jLong **>(pm.replicatePointer(indicesShapes.data(), inputSize * sizeof(Nd4jLong *)));
|
|
|
|
dynamicStitchScalarKernel<X,Y><<<256, 256, 1024, *context->getCudaStream()>>>(dInputBuffers, dInputShapes, dIndicesBuffers, dIndicesShapes, inputSize, output->specialBuffer(), output->specialShapeInfo(), output->lengthOf());
|
|
} else {
|
|
std::vector<int> restDims(output->rankOf() - 1);
|
|
for (int i = restDims.size(); i > 0; i--)
|
|
restDims[restDims.size() - i] = output->rankOf() - i;
|
|
|
|
auto packZ = ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), restDims);
|
|
|
|
std::vector<const void *> inputBuffers(inputSize);
|
|
std::vector<const Nd4jLong *> inputTadShapes(inputSize);
|
|
std::vector<const Nd4jLong *> inputTadOffsets(inputSize);
|
|
|
|
std::vector<const void *> indicesBuffers(inputSize);
|
|
std::vector<const Nd4jLong *> indicesShapes(inputSize);
|
|
|
|
for (int e = 0; e < inputSize; e++) {
|
|
std::vector<int> sourceDims(inputs[e]->rankOf() - indices[e]->rankOf());
|
|
for (int i = sourceDims.size(); i > 0; i--)
|
|
sourceDims[sourceDims.size() - i] = inputs[e]->rankOf() - i;
|
|
|
|
auto packX = ConstantTadHelper::getInstance()->tadForDimensions(inputs[e]->shapeInfo(), sourceDims);
|
|
|
|
indicesBuffers[e] = indices[e]->specialBuffer();
|
|
indicesShapes[e] = indices[e]->specialShapeInfo();
|
|
|
|
inputBuffers[e] = inputs[e]->specialBuffer();
|
|
inputTadShapes[e] = packX.platformShapeInfo();
|
|
inputTadOffsets[e] = packX.platformOffsets();
|
|
}
|
|
|
|
// copying pointers to buffers to device
|
|
auto dInputBuffers = reinterpret_cast<void **>(pm.replicatePointer(inputBuffers.data(), inputSize * sizeof(void *)));
|
|
auto dInputTadShapes = reinterpret_cast<Nd4jLong **>(pm.replicatePointer(inputTadShapes.data(), inputSize * sizeof(Nd4jLong *)));
|
|
auto dInputTadOffsets = reinterpret_cast<Nd4jLong **>(pm.replicatePointer(inputTadOffsets.data(), inputSize * sizeof(Nd4jLong *)));
|
|
|
|
auto dIndicesBuffers = reinterpret_cast<void **>(pm.replicatePointer(indicesBuffers.data(), inputSize * sizeof(void *)));
|
|
auto dIndicesShapes = reinterpret_cast<Nd4jLong **>(pm.replicatePointer(indicesShapes.data(), inputSize * sizeof(Nd4jLong *)));
|
|
|
|
dynamicStitchTadKernel<X,Y><<<256, 256, 1024, *context->getCudaStream()>>>(dInputBuffers, dInputTadShapes, dInputTadOffsets, dIndicesBuffers, dIndicesShapes, inputSize, output->specialBuffer(), packZ.platformShapeInfo(), packZ.platformOffsets());
|
|
}
|
|
|
|
pm.synchronize();
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
template <typename T>
|
|
static void _dynamicPartitionFunctorBP(NDArray const* input, NDArray const* indices, std::vector<NDArray*> const& inputGradientList, std::vector<NDArray*>& outputList) {
|
|
|
|
}
|
|
|
|
void dynamicPartitionFunctor(sd::LaunchContext * context, NDArray const* input, NDArray const* indices, std::vector<NDArray*>& outputList) {
|
|
auto xType = input->dataType();
|
|
auto yType = indices->dataType();
|
|
|
|
NDArray::prepareSpecialUse({}, {indices, input});
|
|
|
|
BUILD_DOUBLE_SELECTOR(xType, yType, _dynamicPartitionFunctor, (context, input, indices, outputList), NUMERIC_TYPES, INDEXING_TYPES);
|
|
|
|
NDArray::registerSpecialUse({}, {indices, input});
|
|
|
|
// TODO: it would be nice to have NDArray::registerSpecialUse signature that accepts something else beyond initializer_list
|
|
for (auto v:outputList) {
|
|
v->tickWriteDevice();
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static int _dynamicStitchFunctorBP(std::vector<NDArray*> const& inputs, std::vector<NDArray*> const& indices, NDArray const* gradInput, std::vector<NDArray*>& outputList){
|
|
throw std::runtime_error("Not umplemented yet");
|
|
}
|
|
|
|
int dynamicStitchFunctor(sd::LaunchContext * context, std::vector<NDArray*> const& inputs, std::vector<NDArray*> const& indices, NDArray* output){
|
|
auto xType = inputs.at(0)->dataType();
|
|
auto yType = indices.at(0)->dataType();
|
|
|
|
for (auto v:indices) {
|
|
v->syncToDevice();
|
|
v->tickReadDevice();
|
|
}
|
|
|
|
for (auto v:inputs) {
|
|
v->syncToDevice();
|
|
v->tickReadDevice();
|
|
}
|
|
|
|
NDArray::prepareSpecialUse({output}, {});
|
|
|
|
|
|
BUILD_DOUBLE_SELECTOR(xType, yType, _dynamicStitchFunctor, (context, inputs, indices, output), NUMERIC_TYPES, INDEXING_TYPES);
|
|
|
|
NDArray::registerSpecialUse({output}, {});
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
int dynamicStitchFunctorBP(sd::LaunchContext * context, std::vector<NDArray*> const& inputs, std::vector<NDArray*> const& indices, NDArray const* gradInput, std::vector<NDArray*>& outputList) {
|
|
auto xType = inputs.at(0)->dataType();
|
|
|
|
BUILD_SINGLE_SELECTOR(xType, return _dynamicStitchFunctorBP, (inputs, indices, gradInput, outputList), NUMERIC_TYPES);
|
|
}
|
|
|
|
void dynamicPartitionFunctorBP(sd::LaunchContext * context, NDArray const* input, NDArray const* indices, std::vector<NDArray*> const& inputGradientList, std::vector<NDArray*>& outputList) {
|
|
auto xType = input->dataType();
|
|
|
|
BUILD_SINGLE_SELECTOR(xType, _dynamicPartitionFunctorBP, (input, indices, inputGradientList, outputList), NUMERIC_TYPES);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|