* Shugeo strided slice zeros (#14) * Modified strided_slice op to properly work with empty-like shapes. * Fixed test for reduce_mean with empty-like input. * [WIP] Last merge (#15) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks * [WIP] Fixing outstanding issues for NLP (#9) * Avoid using not-inited objects * Test fixed. * Redundant method avoided for models like FastText * KMeans++ implementation * KMeans++ implementation * Disable parallel execution * KMeans++ * Tests * Dev branch merge (#16) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Fix some issues on master (#17) * Fix DataVec test issue * Fix issue with dl4j SameDiff output layer * Dtype fix for lambda layers * #7912 BertIterator dtype fix (use float32 not global default) * [WIP] Next set of CUDA stuff (#7) New CUDA implementations and improvements * bad file * Dev branch master merge (#23) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * SameDiff ops, TF import and fixes (#24) * CheckNumerics tests + fixes + misc fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fake quant Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * FakeQuantWithMinMaxArgs Signed-off-by: AlexDBlack <blacka101@gmail.com> * CheckNumerics fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Javadoc Signed-off-by: AlexDBlack <blacka101@gmail.com> * Exception tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for out of scope stack allocated var use Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignore for known failing test (already logged issue) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Merge upstream to fork (#25) * Add thousand-separator commas to TotalParams (#7915) * Add thousand-separator commas to TotalParams The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them. * Add thousand-separator commas to MultiLayerNetwork Corresponding change to MultiLayerNetwork Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com> * Update contributing and issue/PR templates (#7934) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix link to AdaDelta paper (#7942) Fix link to AdaDelta paper hosted on matthewzeiler.com Signed-off-by: Jxtps * Fixes, and ignores for known/logged failing issues (#7943) Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff + DL4J/SameDiff: Multiple fixes (#28) * #7919 HDF5 attribute buffer length fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7909 Arbiter constructor exception ux improvements Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7925 RNN output layer length checks Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Add listener for validating inputs are not incorrectly modified Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Integrate NonInplaceValidationListener into tests * #7844 DL4J SameDiff fixes for variable minibatch size * DL4J SameDiff fixes - ensure gradient for input placeholder is available Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweaks to ExternalErrorsFunction - use placeholders, make more robust * Another fix * More fixes * More SameDiff/DL4J fixes * Scope out scalar array creation in BaseScalarOp * Remove debug code Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Final dev branch merge (#29) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * [WIP] Multiple dataset iterators (#27) * Splitting dataset into arbitrary number * Fixes * Multiple split of iterator * Test * Test * Some fixes * signature change * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * one more test for sequential use of DataSetIteratorSplitter Signed-off-by: raver119 <raver119@gmail.com> * Fixes * Fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * couple of assertions tweaked Signed-off-by: raver119 <raver119@gmail.com> * MDS splitter test :/ Signed-off-by: raver119 <raver119@gmail.com> * Minor refactoring * Multi dataset * Some fixes * More tests * Small number of test fixes/improvements (failures on CI) (#31) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] More CUDA stuff (#26) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * LRN BP CUDA Signed-off-by: raver119 <raver119@gmail.com> * less memory Signed-off-by: raver119 <raver119@gmail.com> * Fixed bug with crop_and_resize op helper. * get rid of unnecessary index-calculation dunction Signed-off-by: Yurii <yurii@skymind.io> * Fixed sort with nth_element cuda-based helper. * Refactored nth_element. * Refactored nth_element op and tests. * Modified usage of dim array with sortTad routine. * Refactored main routine of helper for non_max_image_suppression op. * non_max_image_suppression op helper with cuda kernel implementation. Initial revision. * fix vol2col cuda kernel * meh Signed-off-by: raver119 <raver119@gmail.com> * topK concept Signed-off-by: raver119 <raver119@gmail.com> * unsorted topK with scanWitdh of 1 Signed-off-by: raver119 <raver119@gmail.com> * correct vol2col tests * sorted/unsorted topK Signed-off-by: raver119 <raver119@gmail.com> * implementation and fixing col2im/col2vol * Corrected usage flags with input/output with reverse op. * dup is const now Signed-off-by: raver119 <raver119@gmail.com> * percentile op Signed-off-by: raver119 <raver119@gmail.com> * group tests for mapool2d Signed-off-by: Yurii <yurii@skymind.io> * special test for george Signed-off-by: raver119 <raver119@gmail.com> * less threads for sortTad Signed-off-by: raver119 <raver119@gmail.com> * provide conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * remove auther in sort tad kernel code Signed-off-by: Yurii <yurii@skymind.io> * provide depthwise_conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * - max_pooling_with_argmax - null check for special use Signed-off-by: raver119 <raver119@gmail.com> * dts cuda Signed-off-by: raver119 <raver119@gmail.com> * provide sconv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * std cuda Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op to conform TF implementation. * Improved suppression helper. * provide pooling3d for cuda Signed-off-by: Yurii <yurii@skymind.io> * minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * more of minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * (bi)dynamic_rnn Signed-off-by: raver119 <raver119@gmail.com> * templates init order Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op. * Added cuda kernel for non_max_suppression. * CPU sort by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value tests Signed-off-by: raver119 <raver119@gmail.com> * Eliminate compiler error with cuda implementation. * - repaired gradCheck in cuda - provide conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * missed signature Signed-off-by: raver119 <raver119@gmail.com> * provide depthwise_conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * Implementation of lup helper with cuda kernel. Initial commit. * further work on backprops for convolutions Signed-off-by: Yurii <yurii@skymind.io> * CUDA linear sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * CUDA tad sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * start providing of backprop for pooling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * Added atomicAdd for bool datatype. * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition scalar CUDA Signed-off-by: raver119 <raver119@gmail.com> * important comment Signed-off-by: raver119 <raver119@gmail.com> * fix pooling2d/3d backprop helpers Signed-off-by: Yurii <yurii@skymind.io> * Added non-linear test with dynamic_partition. * Improved test for dynamic_partition. * dynamic_partition TAD concept Signed-off-by: raver119 <raver119@gmail.com> * - dynamic_partition TAD CUDA impl - dynamic_partition TAD CPU fix Signed-off-by: raver119 <raver119@gmail.com> * - rewrite cpu code for usampling2d/3d - write cuda code for usampling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * dynamic_stitch CUDA vector case Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case impl Signed-off-by: raver119 <raver119@gmail.com> * Added tests for dynamic_stitch 3D-4D cases. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * Fixed type check for dynamic stitch. * min/max bp Signed-off-by: raver119 <raver119@gmail.com> * rewrite code for upsampling2d/3d cpu Signed-off-by: Yurii <yurii@skymind.io> * reduce min/max/norm_max bp Signed-off-by: raver119 <raver119@gmail.com> * lup implementation. Additional enhancements. * provide code for upsamling2d/3d backprop Signed-off-by: Yurii <yurii@skymind.io> * weightedCrossEntropyWithLogits Signed-off-by: raver119 <raver119@gmail.com> * Fixed template math atomicMul for 64bit ints. * Refactored dynamic_partition_bp op. * inverseBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * DynamicPartitionBP test datatype fixed. * - nd4j_atomicMul Windows fix - cpu/NDArrayLambda.hpp excluded from CUDA Signed-off-by: raver119 <raver119@gmail.com>
345 lines
15 KiB
C++
345 lines
15 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 05.06.2018
|
|
//
|
|
|
|
#ifndef LIBND4J_MMULHELPER_CPP
|
|
#define LIBND4J_MMULHELPER_CPP
|
|
|
|
#include "../MmulHelper.h"
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <helpers/BlasHelper.h>
|
|
#include <NDArrayFactory.h>
|
|
|
|
namespace nd4j {
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
nd4j::NDArray* nd4j::MmulHelper::tensorDot(const nd4j::NDArray* A, const nd4j::NDArray* B, const std::initializer_list<int>& axesA, const std::initializer_list<int>& axesB) {
|
|
std::vector<int> aA(axesA);
|
|
std::vector<int> aB(axesB);
|
|
return tensorDot(A, B, aA, aB);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
nd4j::NDArray* nd4j::MmulHelper::tensorDot(const nd4j::NDArray* a, const nd4j::NDArray* b, const std::vector<int>& axes_0, const std::vector<int>& axes_1) {
|
|
|
|
std::vector<int> permutAt, permutBt;
|
|
std::vector<Nd4jLong> shapeAt, shapeBt;
|
|
|
|
auto outShape = ShapeUtils::evalShapeForTensorDot(a, b, axes_0, axes_1, permutAt, permutBt, shapeAt, shapeBt);
|
|
|
|
NDArray aPR = a->permute(permutAt);
|
|
NDArray bPR = b->permute(permutBt);
|
|
|
|
// check whether reshape is necessary
|
|
if(!aPR.isSameShape(shapeAt))
|
|
aPR.reshapei( shapeAt);
|
|
if(!bPR.isSameShape(shapeBt))
|
|
bPR.reshapei( shapeBt);
|
|
|
|
NDArray* c = mmul(&aPR, &bPR, nullptr, 1.0, 0.0);
|
|
|
|
c->reshapei(outShape);
|
|
|
|
return c;
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void nd4j::MmulHelper::tensorDot(const nd4j::NDArray* a, const nd4j::NDArray* b, nd4j::NDArray* c, const std::vector<int>& axes_a, const std::vector<int>& axes_b, const std::vector<int>& permutForC) {
|
|
|
|
std::vector<int> permutAt, permutBt;
|
|
std::vector<Nd4jLong> shapeAt, shapeBt;
|
|
ShapeUtils::evalShapeForTensorDot(a, b, axes_a, axes_b, permutAt, permutBt, shapeAt, shapeBt);
|
|
|
|
NDArray *cP(c), *cPR(c);
|
|
|
|
// check whether permutation is required
|
|
if(!permutForC.empty())
|
|
cP = new NDArray(c->permute(permutForC));
|
|
|
|
auto aPR = a->permute(permutAt);
|
|
auto bPR = b->permute(permutBt);
|
|
|
|
// check whether reshape is necessary
|
|
if(!aPR.isSameShape(shapeAt))
|
|
aPR.reshapei(shapeAt);
|
|
if(!bPR.isSameShape(shapeBt))
|
|
bPR.reshapei(shapeBt);
|
|
|
|
if(!cP->isSameShape({aPR.sizeAt(0), bPR.sizeAt(1)}))
|
|
cPR = new NDArray(cP->reshape(cP->ordering(), {aPR.sizeAt(0), bPR.sizeAt(1)}));
|
|
|
|
mmul(&aPR, &bPR, cPR, 1.0, 0.0);
|
|
|
|
if(cPR->getBuffer() != cP->getBuffer() || cPR->getSpecialBuffer() != cP->getSpecialBuffer() ) // this means both permute and reshape have been performed on c, cP always points on c->getBuffer()
|
|
cP->assign(cPR);
|
|
|
|
if(cPR != c)
|
|
delete cPR;
|
|
if(cP != c)
|
|
delete cP;
|
|
}
|
|
|
|
|
|
#ifndef __JAVACPP_HACK__
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void nd4j::MmulHelper::tensorDot(const NDArray* a, const NDArray* b, NDArray* c, const std::vector<std::vector<Nd4jLong>>& modifA, const std::vector<std::vector<Nd4jLong>>& modifB, const std::vector<std::vector<Nd4jLong>>& modifC) {
|
|
|
|
NDArray *aPR(const_cast<NDArray*>(a)), *bPR(const_cast<NDArray*>(b));
|
|
std::string whatToDoWithA, whatToDoWithB, whatToDoWithC; // "" - nothing; "p" - permutation; "r" - reshaping; "pr" - permutation+reshaping; "rp" - reshaping/permutation, and so on; if another string is produced - throw exception
|
|
|
|
for(const auto& arr : modifA)
|
|
whatToDoWithA = (std::find(arr.begin(), arr.end(), 0) != arr.end()) ? whatToDoWithA + "p" : whatToDoWithA + "r"; // when 0 is present in arr then it is permutation array, otherwise - it is reshaping array
|
|
for(const auto& arr : modifB)
|
|
whatToDoWithB = (std::find(arr.begin(), arr.end(), 0) != arr.end()) ? whatToDoWithB + "p" : whatToDoWithB + "r";
|
|
for(const auto& arr : modifC)
|
|
whatToDoWithC = (std::find(arr.begin(), arr.end(), 0) != arr.end()) ? whatToDoWithC + "p" : whatToDoWithC + "r";
|
|
|
|
// first step for a array
|
|
if(!whatToDoWithA.empty())
|
|
aPR = (whatToDoWithA[0] == 'p') ? new NDArray(a->permute(modifA[0])) : new NDArray(a->reshape(a->ordering(), modifA[0]));
|
|
// first step for b array
|
|
if(!whatToDoWithB.empty())
|
|
bPR = (whatToDoWithB[0] == 'p') ? new NDArray(b->permute(modifB[0])) : new NDArray(b->reshape(b->ordering(), modifB[0]));
|
|
// rest steps for a array
|
|
for(int i = 1; i < whatToDoWithA.size(); ++i)
|
|
if(whatToDoWithA[i] == 'p') aPR->permutei(modifA[i]); else aPR->reshapei(modifA[i]);
|
|
// rest steps for b array
|
|
for(int i = 1; i < whatToDoWithB.size(); ++i)
|
|
if(whatToDoWithB[i] == 'p') bPR->permutei(modifB[i]); else bPR->reshapei(modifB[i]);
|
|
|
|
// now work with c array
|
|
std::vector<NDArray*> cArrs = {c};
|
|
if(!whatToDoWithC.empty()) {
|
|
cArrs = std::vector<NDArray*>(whatToDoWithC.size()+1, c);
|
|
for(int i = 0; i < cArrs.size()-1; ++i)
|
|
cArrs[i+1] = (whatToDoWithC[i] == 'p') ? new NDArray(cArrs[i]->permute(modifC[i])) : new NDArray(cArrs[i]->reshape(c->ordering(), modifC[i])); // since we ignore first element in cArrs (that is cArrs[0]) then it is always equal to c
|
|
}
|
|
|
|
mmul(aPR, bPR, cArrs[cArrs.size()-1], 1.0, 0.0);
|
|
|
|
// check whether new buffer allocation was happened for c array
|
|
if(!whatToDoWithC.empty()) {
|
|
for(int i = cArrs.size()-1; i > 0; --i) {
|
|
if(cArrs[i]->getBuffer() != cArrs[i-1]->getBuffer() || cArrs[i]->getSpecialBuffer() != cArrs[i-1]->getSpecialBuffer())
|
|
cArrs[i-1]->assign(cArrs[i]);
|
|
delete cArrs[i];
|
|
}
|
|
}
|
|
|
|
if(aPR != a)
|
|
delete aPR;
|
|
if(bPR != b)
|
|
delete bPR;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
NDArray* nd4j::MmulHelper::tensorDot(const nd4j::NDArray* a, const nd4j::NDArray* b, const std::vector<std::vector<Nd4jLong>>& modifA, const std::vector<std::vector<Nd4jLong>>& modifB) {
|
|
|
|
NDArray *aPR(const_cast<NDArray*>(a)), *bPR(const_cast<NDArray*>(b));
|
|
std::string whatToDoWithA, whatToDoWithB; // "" - nothing; "p" - permutation only; "r" - reshaping only; "pr" - permutation+reshaping; "rp" - reshaping/permutation; another string - throw exception
|
|
|
|
for(const auto& arr : modifA)
|
|
whatToDoWithA = (std::find(arr.begin(), arr.end(), 0) != arr.end()) ? whatToDoWithA + "p" : whatToDoWithA + "r"; // when 0 is present in arr then it is permutation array, otherwise - it is reshaping array
|
|
for(const auto& arr : modifB)
|
|
whatToDoWithB = (std::find(arr.begin(), arr.end(), 0) != arr.end()) ? whatToDoWithB + "p" : whatToDoWithB + "r";
|
|
|
|
// first step for a array
|
|
if(!whatToDoWithA.empty())
|
|
aPR = (whatToDoWithA[0] == 'p') ? new NDArray(a->permute(modifA[0])) : new NDArray(a->reshape(a->ordering(), modifA[0]));
|
|
// first step for b array
|
|
if(!whatToDoWithB.empty())
|
|
bPR = (whatToDoWithB[0] == 'p') ? new NDArray(b->permute(modifB[0])) : new NDArray(b->reshape(b->ordering(), modifB[0]));
|
|
// rest steps for a array
|
|
for(int i = 1; i < whatToDoWithA.size(); ++i)
|
|
if(whatToDoWithA[i] == 'p') aPR->permutei(modifA[i]); else aPR->reshapei(modifA[i]);
|
|
// rest steps for b array
|
|
for(int i = 1; i < whatToDoWithB.size(); ++i)
|
|
if(whatToDoWithB[i] == 'p') bPR->permutei(modifB[i]); else bPR->reshapei(modifB[i]);
|
|
|
|
NDArray* result = mmul(aPR, bPR, nullptr, 1.0, 0.0);
|
|
|
|
if(aPR != a)
|
|
delete aPR;
|
|
if(bPR != b)
|
|
delete bPR;
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
NDArray* MmulHelper::mmulNxN(const NDArray* A, const NDArray* B, NDArray* C, const double alpha, const double beta, const char outOrder) {
|
|
|
|
const int aRank = A->rankOf();
|
|
const int bRank = B->rankOf();
|
|
|
|
// input ranks validation
|
|
if(aRank > bRank && bRank != 2)
|
|
throw std::runtime_error("MmulHelper::mmulNxN: rank of B array should be equal 2 !");
|
|
else if(bRank > aRank && aRank != 2)
|
|
throw std::runtime_error("MmulHelper::mmulNxN: rank of A array should be equal 2 !");
|
|
else if (aRank == bRank ) {
|
|
for(int i = 0; i < aRank - 2; ++i)
|
|
if(A->sizeAt(i) != B->sizeAt(i))
|
|
throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !");
|
|
}
|
|
|
|
if(A->sizeAt(-1) != B->sizeAt(-2))
|
|
throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !");
|
|
|
|
// validation of C array
|
|
std::vector<Nd4jLong> cExpectedShape = aRank > bRank ? A->getShapeAsVector() : B->getShapeAsVector();
|
|
cExpectedShape[cExpectedShape.size() - 2] = A->sizeAt(-2);
|
|
cExpectedShape[cExpectedShape.size() - 1] = B->sizeAt(-1);
|
|
|
|
if(C != nullptr ) {
|
|
if(!C->isSameShape(cExpectedShape))
|
|
throw std::runtime_error("MmulHelper::mmulNxN: shape of C array is not suitable for AxB matrix multiplication !");
|
|
}
|
|
else {
|
|
C = new NDArray(outOrder, cExpectedShape, B->dataType());
|
|
}
|
|
|
|
|
|
// multiplication
|
|
const std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(C->rankOf(), {-2, -1});
|
|
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(C->getShapeInfo(), dimsToExclude);
|
|
std::vector<Nd4jLong> idxRanges(2 * C->rankOf());
|
|
|
|
// #pragma omp parallel for schedule(guided) firstprivate(idxRanges)
|
|
for(Nd4jLong i = 0; i < numOfSubArrs; ++i) {
|
|
|
|
ShapeUtils::evalIdxRangesForSubArr(i, C->getShapeInfo(), dimsToExclude, idxRanges.data());
|
|
NDArray cSubArr = (*C)(idxRanges);
|
|
|
|
if(aRank > bRank) {
|
|
NDArray aSubArr = (*A)(idxRanges);
|
|
mmulMxM(&aSubArr, B, &cSubArr, 1., 0., outOrder);
|
|
}
|
|
else if(bRank > aRank) {
|
|
NDArray bSubArr = (*B)(idxRanges);
|
|
mmulMxM(A, &bSubArr, &cSubArr, 1., 0, outOrder);
|
|
}
|
|
else {
|
|
NDArray aSubArr = (*A)(idxRanges);
|
|
NDArray bSubArr = (*B)(idxRanges);
|
|
mmulMxM(&aSubArr, &bSubArr, &cSubArr, 1., 0., outOrder);
|
|
}
|
|
}
|
|
|
|
return C;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
nd4j::NDArray* MmulHelper::mmul(const nd4j::NDArray* A, const nd4j::NDArray* B, nd4j::NDArray* C , const double alpha, const double beta, const char outOrder) {
|
|
|
|
int lenDim;
|
|
const int aRank = A->rankOf();
|
|
const int bRank = B->rankOf();
|
|
const bool isAVector = shape::isCommonVector(A->getShapeInfo(), lenDim);
|
|
const bool isBVector = shape::isCommonVector(B->getShapeInfo(), lenDim);
|
|
|
|
// dot product of 2 vectors
|
|
if(isAVector && isBVector && (aRank != 2 || aRank == 2 && (A->isSameShape(B) || bRank == 1 && A->sizeAt(1) == 1))) // (1x1x1 * 1x1) or (1x4 * 1*4) or (4x1 * 4x1) or (4x1 * 4)
|
|
return dot(A, B, C, alpha, beta);
|
|
|
|
// matrix x matrix
|
|
if(aRank == 2 && bRank == 2)
|
|
return mmulMxM(A, B, C, alpha, beta, outOrder);
|
|
|
|
// matrix x vector
|
|
if(aRank == 2 && isBVector)
|
|
return mmulMxV(A, B, C, alpha, beta, outOrder);
|
|
|
|
// batched matrix multiplication
|
|
return mmulNxN(A, B, C, alpha, beta, outOrder);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void MmulHelper::matmul(const nd4j::NDArray* x, const nd4j::NDArray* y, nd4j::NDArray* z, const bool transX, const bool transY) {
|
|
int xRank = x->rankOf();
|
|
int yRank = y->rankOf();
|
|
|
|
auto outShape = ShapeUtils::evalShapeForMatmul(x->getShapeInfo(), y->getShapeInfo(), transX, transY);
|
|
if(!z->isSameShape(outShape)) {
|
|
nd4j_printf("NDArrayFactory::matmul static method: input shape of output array is wrong, actual is %s and expected is %s ! \n", ShapeUtils::shapeAsString(z).c_str(), ShapeUtils::shapeAsString(outShape).c_str());
|
|
throw std::invalid_argument("");
|
|
}
|
|
|
|
NDArray* xT(const_cast<NDArray*>(x)), *yT(const_cast<NDArray*>(y)), *zT(z);
|
|
|
|
if((transX && xRank > 1) || (transY && yRank > 1)) {
|
|
const int rank = xRank >= yRank ? xRank : yRank;
|
|
std::vector<int> permut(rank);
|
|
for (int i = 0; i < rank-2; ++i)
|
|
permut[i] = i;
|
|
permut[rank-2] = rank - 1;
|
|
permut[rank-1] = rank - 2;
|
|
|
|
if(transX)
|
|
xT = new NDArray(x->permute(permut));
|
|
|
|
if(transY)
|
|
yT = new NDArray(y->permute(permut));
|
|
}
|
|
|
|
if(xRank <= 2 && yRank <= 2) { // dot (1Dx1D), vector-matrix (1Dx2D), matrix-vector (2Dx1D), matrix-matrix (2Dx2D) product cases
|
|
|
|
if(xRank == 1 && yRank == 2) { // reduce vector-matrix to matrix-matrix case
|
|
xT = new NDArray(x->reshape(x->ordering(), {1, x->lengthOf()})); // please note x is not transposed in this case (since xRank=1)
|
|
zT = new NDArray(z->reshape(z->ordering(), {1, z->lengthOf()}));
|
|
}
|
|
|
|
mmul(xT, yT, zT, 1., 0.);
|
|
}
|
|
else { // rest cases - batched mmul
|
|
|
|
const int batchRank = xRank - 2;
|
|
std::vector<int> dimsToExclude(batchRank);
|
|
for(int i = 0; i < batchRank; ++i)
|
|
dimsToExclude[i] = i;
|
|
|
|
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(xT->getShapeInfo(), dimsToExclude);
|
|
|
|
//PRAGMA_OMP_PARALLEL_FOR
|
|
for(Nd4jLong i = 0; i < numOfSubArrs; ++i) {
|
|
auto xSubArr = (*xT)(i, dimsToExclude);
|
|
auto ySubArr = (*yT)(i, dimsToExclude);
|
|
auto zSubArr = (*zT)(i, dimsToExclude);
|
|
mmul(&xSubArr, &ySubArr, &zSubArr, 1., 0.);
|
|
}
|
|
}
|
|
|
|
if(xT != x)
|
|
delete xT;
|
|
if(yT != y)
|
|
delete yT;
|
|
if(zT != z)
|
|
delete zT;
|
|
}
|
|
|
|
//BUILD_TRIPLE_TEMPLATE(template void usualGemm, (const char cOrder, const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* A, const int lda, const void* B, const int ldb, const double beta, void* C, const int ldc), LIBND4J_TYPES, FLOAT_TYPES, FLOAT_TYPES);
|
|
//BUILD_TRIPLE_TEMPLATE(template void usualGemv, (const char aOrder, const int M, const int N, const double alpha, const void* A, const int lda, const void* B, const int incx, const double beta, void* C, const int incy), LIBND4J_TYPES, FLOAT_TYPES, FLOAT_TYPES);
|
|
//BUILD_TRIPLE_TEMPLATE(template void usualDot, (const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ), LIBND4J_TYPES, FLOAT_TYPES, FLOAT_TYPES);
|
|
|
|
}
|
|
|
|
#endif |