Go to file
raver119 dddc8a1143
[WIP] Thread safety (#229)
* sync after cublas*gemm

Signed-off-by: raver119 <raver119@gmail.com>

* mutex for CublasHelper

Signed-off-by: raver119 <raver119@gmail.com>

* don't store cublasHandle in LaunchContext, it's per-device anyway

Signed-off-by: raver119 <raver119@gmail.com>

* some printout

Signed-off-by: raver119 <raver119@gmail.com>

* check for field instead

Signed-off-by: raver119 <raver119@gmail.com>

* pew-pew

Signed-off-by: raver119 <raver119@gmail.com>

* don't release ContextBuffers until device changed

Signed-off-by: raver119 <raver119@gmail.com>

* small tweak

Signed-off-by: raver119 <raver119@gmail.com>

* some logging in sgemm

Signed-off-by: raver119 <raver119@gmail.com>

* stream sync

Signed-off-by: raver119 <raver119@gmail.com>

* some more logging

Signed-off-by: raver119 <raver119@gmail.com>

* some more error checks

Signed-off-by: raver119 <raver119@gmail.com>

* one fancy test

Signed-off-by: raver119 <raver119@gmail.com>

* one fancy test

Signed-off-by: raver119 <raver119@gmail.com>

* minor AffinityManager fix

Signed-off-by: raver119 <raver119@gmail.com>

* cudaEvent error logging improvement

Signed-off-by: raver119 <raver119@gmail.com>

* ConstantHelper thread safety

Signed-off-by: raver119 <raver119@gmail.com>

* - minor corrections in ConstantTadHelper

Signed-off-by: Yurii <yurii@skymind.io>

* ConstantShapeHelper thread safety

Signed-off-by: raver119 <raver119@gmail.com>

* ConstantTadHelper.cu updated

Signed-off-by: raver119 <raver119@gmail.com>

* logging off

Signed-off-by: raver119 <raver119@gmail.com>

* logging off

Signed-off-by: raver119 <raver119@gmail.com>
2019-09-03 22:00:38 +03:00
.github Update contributing and issue/PR templates (#7934) 2019-06-22 16:21:27 +10:00
arbiter Version upgrades (#199) 2019-08-30 14:35:27 +10:00
datavec #8182 remove spark version suffix (#227) 2019-09-03 18:54:19 +10:00
deeplearning4j [WIP] Thread safety (#229) 2019-09-03 22:00:38 +03:00
docs Dl4j LSTM and Dropout CuDNN fallback and options (#152) 2019-08-29 13:05:01 +10:00
gym-java-client Fix backend dependencies for tests (#189) 2019-08-29 12:54:48 +09:00
jumpy Fix backend dependencies for tests (#189) 2019-08-29 12:54:48 +09:00
libnd4j [WIP] Thread safety (#229) 2019-09-03 22:00:38 +03:00
nd4j [WIP] Thread safety (#229) 2019-09-03 22:00:38 +03:00
nd4s ND4S test fix (#210) 2019-08-31 12:27:09 +10:00
pydatavec Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pydl4j Fix backend dependencies for tests (#189) 2019-08-29 12:54:48 +09:00
rl4j Version upgrades (#199) 2019-08-30 14:35:27 +10:00
scalnet Version upgrades (#199) 2019-08-30 14:35:27 +10:00
.gitignore Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
CONTRIBUTING.md Update contributing and issue/PR templates (#7934) 2019-06-22 16:21:27 +10:00
Jenkinsfile Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
LICENSE Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
README.md Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
change-cuda-versions.sh Update dependencies to just released JavaCPP and JavaCV 1.5.1 (#8004) 2019-07-14 21:07:33 +03:00
change-scala-versions.sh Version upgrades (#199) 2019-08-30 14:35:27 +10:00
perform-release.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pom.xml Version upgrades (#199) 2019-08-30 14:35:27 +10:00

README.md

Monorepo of Deeplearning4j

Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:

To build everything, we can use commands like

./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx

or

mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true

An example of GPU "CC" or compute capability is 61 for Titan X Pascal.

Want some examples?

We have separate repository with various examples available: https://github.com/deeplearning4j/dl4j-examples

In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/deeplearning4j/dl4j-examples/tree/master/tutorials