cavis/libnd4j/include/helpers/impl/GradCheck.cpp
raver119 3c4e959e21 [WIP] More of CUDA (#95)
* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* Implementation of hashcode cuda helper. Working edition.

* Fixed parallel test input arangements.

* Fixed tests for hashcode op.

* Fixed shape calculation for image:crop_and_resize op and test.

* NativeOps tests. Initial test suite.

* Added tests for indexReduce methods.

* Added test on execBroadcast with NDArray as dimensions.

* Added test on execBroadcastBool with NDArray as dimensions.

* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.

* Added tests for execReduce with scalar results.

* Added reduce tests for non-empty dims array.

* Added tests for reduce3.

* Added tests for execScalar.

* Added tests for execSummaryStats.

* - provide cpu/cuda code for batch_to_space
- testing it

Signed-off-by: Yurii <yurii@skymind.io>

* - remove old test for batch_to_space (had wrong format and numbers were not checked)

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed complilation errors with test.

* Added test for execTransformFloat.

* Added test for execTransformSame.

* Added test for execTransformBool.

* Added test for execTransformStrict.

* Added tests for execScalar/execScalarBool with TADs.

* Added test for flatten.

* - provide cpu/cuda code for space_to_Batch operaion

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for concat.

* comment unnecessary stuff in s_t_b

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for specialConcat.

* Added tests for memcpy/set routines.

* Fixed pullRow cuda test.

* Added pullRow test.

* Added average test.

* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)

Signed-off-by: Yurii <yurii@skymind.io>

* - debugging and fixing cuda tests in JavaInteropTests file

Signed-off-by: Yurii <yurii@skymind.io>

* - correct some tests

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for shuffle.

* Fixed ops declarations.

* Restored omp and added shuffle test.

* Added convertTypes test.

* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.

* Added sort tests.

* Added tests for execCustomOp.

* - further debuging and fixing tests terminated with crash

Signed-off-by: Yurii <yurii@skymind.io>

* Added tests for calculateOutputShapes.

* Addded Benchmarks test.

* Commented benchmark tests.

* change assertion

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for apply_sgd op. Added cpu helper for that op.

* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.

* Added test for assign broadcastable.

* Added tests for assign_bp op.

* Added tests for axpy op.

* - assign/execScalar/execTransformAny signature change
- minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed axpy op.

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* - fix tests for nativeOps::concat

Signed-off-by: Yurii <yurii@skymind.io>

* sequential transform/scalar

Signed-off-by: raver119 <raver119@gmail.com>

* allow nested parallelism

Signed-off-by: raver119 <raver119@gmail.com>

* assign_bp leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* block setRNG fix

Signed-off-by: raver119 <raver119@gmail.com>

* enable parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* enable nested parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* Added cuda implementation for row_count helper.

* Added implementation for tnse gains op helper.

* - take into account possible situations when input arrays are empty in reduce_ cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.

* Added kernel for tsne/symmetrized op heleper.

* Implementation of tsne/symmetrized op cuda helper. Working edition.

* Eliminated waste printfs.

* Added test for broadcastgradientargs op.

* host-only fallback for empty reduce float

Signed-off-by: raver119 <raver119@gmail.com>

* - some tests fixes

Signed-off-by: Yurii <yurii@skymind.io>

* - correct the rest of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* - further correction of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for Cbow op. Also added cuda implementation for cbow helpers.

* - improve code of stack operation for scalar case

Signed-off-by: Yurii <yurii@skymind.io>

* - provide cuda kernel for gatherND operation

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of cbow helpers with cuda kernels.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* - further correction of cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implementatation of cbow op helper with cuda kernels. Working edition.

* Skip random testing for cudablas case.

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for ELU and ELU_BP ops.

* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.

* Added tests for neq_scalar.

* Added test for noop.

* - further work on clipbynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - get rid of concat op call, use instead direct concat helper call

Signed-off-by: Yurii <yurii@skymind.io>

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for lrelu and lrelu_bp.

* Added tests for selu and selu_bp.

* Fixed lrelu derivative helpers.

* - some corrections in lstm

Signed-off-by: Yurii <yurii@skymind.io>

* operator * result shape fix

Signed-off-by: raver119 <raver119@gmail.com>

* - correct typo in lstmCell

Signed-off-by: Yurii <yurii@skymind.io>

* few tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA inverse broadcast bool fix

Signed-off-by: raver119 <raver119@gmail.com>

* disable MMAP test for CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* BooleanOp syncToDevice

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* additional data types for im2col/col2im

Signed-off-by: raver119 <raver119@gmail.com>

* Added test for firas_sparse op.

* one more RandomBuffer test excluded

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for flatten op.

* Added test for Floor op.

* bunch of tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* mmulDot tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Implemented floordiv_bp op and tests.

* Fixed scalar case with cuda implementation for bds.

* - work on cuda kernel for clip_by_norm backprop op is completed

Signed-off-by: Yurii <yurii@skymind.io>

* Eliminate cbow crach.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminated abortion with batched nlp test.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed shared flag initializing.

* disabled bunch of cpu workspaces tests

Signed-off-by: raver119 <raver119@gmail.com>

* scalar operators fix: missing registerSpecialUse call

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed logdet for cuda and tests.

* - correct clipBynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed crop_and_resize shape datatype.

* - correct some mmul tests

Signed-off-by: Yurii <yurii@skymind.io>
2019-08-05 11:27:05 +10:00

158 lines
5.8 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 16.07.2018
//
#include <GradCheck.h>
#include <NDArrayFactory.h>
namespace nd4j {
//////////////////////////////////////////////////////////////////////////
void GradCheck::fillGradArrays(const LossFunc loss, const std::vector<NDArray*>& gradArrs) {
const int numInGradArrs = gradArrs.size();
// fill input gradient arrays in accordance to type of loss function
switch(loss) {
case MEAN:
PRAGMA_OMP_PARALLEL_FOR_IF(numInGradArrs > 1)
for(int i = 0; i < numInGradArrs; ++i)
*gradArrs[i] = 1. / gradArrs[i]->lengthOf();
break;
case SUM:
PRAGMA_OMP_PARALLEL_FOR_IF(numInGradArrs > 1)
for(int i = 0; i < numInGradArrs; ++i)
*gradArrs[i] = 1.;
break;
default:
throw std::invalid_argument("GradCheck::fillGradArrays: invalid type of loss function !");
}
}
//////////////////////////////////////////////////////////////////////////
bool GradCheck::checkGrad(ops::DeclarableOp& opFF, ops::DeclarableOp& opBP, const OpArgsHolder& argsHolderFF, const OpArgsHolder& argsHolderBP,
const std::vector<bool>& whatArrsToCheck, const std::vector<double>& idxRange, const LossFunc loss ) {
const int numInArrsFF = argsHolderFF.getNumInArrs(); // at the same time numInArrsFF = number of output arrays in opBP
const int numInGradArrsBP = argsHolderBP.getNumInArrs() - numInArrsFF; // because argsHolderBP.getNumInArrs() = numInArrsFF + numInGradArrsBP
const std::vector<NDArray*>& inArrsFF = argsHolderFF.getInArrs();
const std::vector<NDArray*>& inArrsBP = argsHolderBP.getInArrs();
// fill input gradient arrays in accordance to kind of loss function
fillGradArrays(loss, std::vector<NDArray*>(&inArrsBP[numInArrsFF], &inArrsBP[numInArrsFF + numInGradArrsBP]));
// back prop pass
ResultSet* outArrsBP = opBP.execute(argsHolderBP); // number of output arrays in back prop = numInArrsFF;
NDArray tmpScalar(nd4j::DataType::DOUBLE, inArrsFF[0]->getContext()); // scalar = 0
for(int i = 0; i < numInArrsFF; ++i) { // loop through input array
if(!whatArrsToCheck.empty() && static_cast<bool>(whatArrsToCheck[i]) == false)
continue;
const Nd4jLong idxStart = static_cast<Nd4jLong>(idxRange[0] * inArrsFF[i]->lengthOf());
const Nd4jLong idxEnd = static_cast<Nd4jLong>(idxRange[1] * inArrsFF[i]->lengthOf());
for(Nd4jLong j = idxStart; j < idxEnd; ++j) { // loop through all elements for current array
const double orig = inArrsFF[i]->e<double>(j);
// add epsilon, feed forward
inArrsFF[i]->p<double>(j, orig + EPSILON);
ResultSet* outArrsFF = opFF.execute(argsHolderFF);
int numOutArrs = outArrsFF->size();
double scorePlus = 0.;
for(int k = 0; k < numOutArrs; ++k) { // loop through output arrays
if(loss == SUM)
outArrsFF->at(k)->reduceNumber(reduce::Sum, tmpScalar);
else
outArrsFF->at(k)->reduceNumber(reduce::Mean, tmpScalar);
scorePlus += tmpScalar.e<double>(0);
}
delete outArrsFF;
// subtract epsilon, feed forward
inArrsFF[i]->p<double>(j, orig - EPSILON);
outArrsFF = opFF.execute(argsHolderFF);
double scoreMinus = 0.;
for(int k = 0; k < numOutArrs; ++k) { // loop through output arrays
if(loss == SUM)
outArrsFF->at(k)->reduceNumber(reduce::Sum, tmpScalar);
else
outArrsFF->at(k)->reduceNumber(reduce::Mean, tmpScalar);
scoreMinus += tmpScalar.e<double>(0);
}
delete outArrsFF;
// restore initial element value
inArrsFF[i]->p<double>(j, orig);
// calculate numerical gradient
const double numericalGrad = (scorePlus - scoreMinus) / (2 * EPSILON);
if(std::isnan(numericalGrad) || std::isinf(numericalGrad)) {
printf("GradCheck::checkGrad: got wrong value for numerical gradient for input array # %i and its element at position %lld ! \n", i, j);
throw std::runtime_error("");
}
// get analytical gradient
const double analyticGrad = outArrsBP->at(i)->e<double>(j);
if(std::isnan(analyticGrad) || std::isinf(analyticGrad)) {
printf("GradCheck::checkGrad: got wrong value for analytical gradient for input array # %i and its element at position %lld ! \n", i, j);
throw std::runtime_error("");
}
// printf("num = %.5f, ana = %.5f\n", numericalGrad, analyticGrad);
// calculate relative error
double relError;
if(numericalGrad == 0. && analyticGrad == 0.)
relError = 0.;
else
relError = math::nd4j_abs<double>(analyticGrad - numericalGrad) / (math::nd4j_abs<double>(analyticGrad) + math::nd4j_abs<double>(numericalGrad));
// verify result
if(relError > MAXRELERR || std::isnan(relError)) {
if(math::nd4j_abs<double>(analyticGrad - numericalGrad) < MINABSERR)
continue;
printf("numericalGrad = %f, analyticGrad = %f \n", numericalGrad, analyticGrad);
printf("GradCheck::checkGrad: got RELERROR = %f > MAXRELERROR(%f) for input array # %i and its element at position %lld ! \n", relError, MAXRELERR, i, j);
delete outArrsBP;
return false;
}
}
}
delete outArrsBP;
return true;
}
}