* initial commit Signed-off-by: raver119 <raver119@gmail.com> * Implementation of hashcode cuda helper. Working edition. * Fixed parallel test input arangements. * Fixed tests for hashcode op. * Fixed shape calculation for image:crop_and_resize op and test. * NativeOps tests. Initial test suite. * Added tests for indexReduce methods. * Added test on execBroadcast with NDArray as dimensions. * Added test on execBroadcastBool with NDArray as dimensions. * Added tests on execPairwiseTransform and execPairwiseTransofrmBool. * Added tests for execReduce with scalar results. * Added reduce tests for non-empty dims array. * Added tests for reduce3. * Added tests for execScalar. * Added tests for execSummaryStats. * - provide cpu/cuda code for batch_to_space - testing it Signed-off-by: Yurii <yurii@skymind.io> * - remove old test for batch_to_space (had wrong format and numbers were not checked) Signed-off-by: Yurii <yurii@skymind.io> * Fixed complilation errors with test. * Added test for execTransformFloat. * Added test for execTransformSame. * Added test for execTransformBool. * Added test for execTransformStrict. * Added tests for execScalar/execScalarBool with TADs. * Added test for flatten. * - provide cpu/cuda code for space_to_Batch operaion Signed-off-by: Yurii <yurii@skymind.io> * Added test for concat. * comment unnecessary stuff in s_t_b Signed-off-by: Yurii <yurii@skymind.io> * Added test for specialConcat. * Added tests for memcpy/set routines. * Fixed pullRow cuda test. * Added pullRow test. * Added average test. * - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...) Signed-off-by: Yurii <yurii@skymind.io> * - debugging and fixing cuda tests in JavaInteropTests file Signed-off-by: Yurii <yurii@skymind.io> * - correct some tests Signed-off-by: Yurii <yurii@skymind.io> * Added test for shuffle. * Fixed ops declarations. * Restored omp and added shuffle test. * Added convertTypes test. * Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps. * Added sort tests. * Added tests for execCustomOp. * - further debuging and fixing tests terminated with crash Signed-off-by: Yurii <yurii@skymind.io> * Added tests for calculateOutputShapes. * Addded Benchmarks test. * Commented benchmark tests. * change assertion Signed-off-by: raver119 <raver119@gmail.com> * Added tests for apply_sgd op. Added cpu helper for that op. * Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps. * Added test for assign broadcastable. * Added tests for assign_bp op. * Added tests for axpy op. * - assign/execScalar/execTransformAny signature change - minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Fixed axpy op. * meh Signed-off-by: raver119 <raver119@gmail.com> * - fix tests for nativeOps::concat Signed-off-by: Yurii <yurii@skymind.io> * sequential transform/scalar Signed-off-by: raver119 <raver119@gmail.com> * allow nested parallelism Signed-off-by: raver119 <raver119@gmail.com> * assign_bp leak fix Signed-off-by: raver119 <raver119@gmail.com> * block setRNG fix Signed-off-by: raver119 <raver119@gmail.com> * enable parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * enable nested parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * Added cuda implementation for row_count helper. * Added implementation for tnse gains op helper. * - take into account possible situations when input arrays are empty in reduce_ cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces. * Added kernel for tsne/symmetrized op heleper. * Implementation of tsne/symmetrized op cuda helper. Working edition. * Eliminated waste printfs. * Added test for broadcastgradientargs op. * host-only fallback for empty reduce float Signed-off-by: raver119 <raver119@gmail.com> * - some tests fixes Signed-off-by: Yurii <yurii@skymind.io> * - correct the rest of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * - further correction of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * Added test for Cbow op. Also added cuda implementation for cbow helpers. * - improve code of stack operation for scalar case Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda kernel for gatherND operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cbow helpers with cuda kernels. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * - further correction of cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implementatation of cbow op helper with cuda kernels. Working edition. * Skip random testing for cudablas case. * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for ELU and ELU_BP ops. * Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops. * Added tests for neq_scalar. * Added test for noop. * - further work on clipbynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * - get rid of concat op call, use instead direct concat helper call Signed-off-by: Yurii <yurii@skymind.io> * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for lrelu and lrelu_bp. * Added tests for selu and selu_bp. * Fixed lrelu derivative helpers. * - some corrections in lstm Signed-off-by: Yurii <yurii@skymind.io> * operator * result shape fix Signed-off-by: raver119 <raver119@gmail.com> * - correct typo in lstmCell Signed-off-by: Yurii <yurii@skymind.io> * few tests fixed Signed-off-by: raver119 <raver119@gmail.com> * CUDA inverse broadcast bool fix Signed-off-by: raver119 <raver119@gmail.com> * disable MMAP test for CUDA Signed-off-by: raver119 <raver119@gmail.com> * BooleanOp syncToDevice Signed-off-by: raver119 <raver119@gmail.com> * meh Signed-off-by: raver119 <raver119@gmail.com> * additional data types for im2col/col2im Signed-off-by: raver119 <raver119@gmail.com> * Added test for firas_sparse op. * one more RandomBuffer test excluded Signed-off-by: raver119 <raver119@gmail.com> * Added tests for flatten op. * Added test for Floor op. * bunch of tests fixed Signed-off-by: raver119 <raver119@gmail.com> * mmulDot tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Implemented floordiv_bp op and tests. * Fixed scalar case with cuda implementation for bds. * - work on cuda kernel for clip_by_norm backprop op is completed Signed-off-by: Yurii <yurii@skymind.io> * Eliminate cbow crach. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Eliminated abortion with batched nlp test. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Fixed shared flag initializing. * disabled bunch of cpu workspaces tests Signed-off-by: raver119 <raver119@gmail.com> * scalar operators fix: missing registerSpecialUse call Signed-off-by: raver119 <raver119@gmail.com> * Fixed logdet for cuda and tests. * - correct clipBynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * Fixed crop_and_resize shape datatype. * - correct some mmul tests Signed-off-by: Yurii <yurii@skymind.io>
158 lines
5.8 KiB
C++
158 lines
5.8 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 16.07.2018
|
|
//
|
|
|
|
#include <GradCheck.h>
|
|
#include <NDArrayFactory.h>
|
|
|
|
|
|
namespace nd4j {
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void GradCheck::fillGradArrays(const LossFunc loss, const std::vector<NDArray*>& gradArrs) {
|
|
|
|
const int numInGradArrs = gradArrs.size();
|
|
|
|
// fill input gradient arrays in accordance to type of loss function
|
|
switch(loss) {
|
|
|
|
case MEAN:
|
|
PRAGMA_OMP_PARALLEL_FOR_IF(numInGradArrs > 1)
|
|
for(int i = 0; i < numInGradArrs; ++i)
|
|
*gradArrs[i] = 1. / gradArrs[i]->lengthOf();
|
|
break;
|
|
|
|
case SUM:
|
|
PRAGMA_OMP_PARALLEL_FOR_IF(numInGradArrs > 1)
|
|
for(int i = 0; i < numInGradArrs; ++i)
|
|
*gradArrs[i] = 1.;
|
|
break;
|
|
|
|
default:
|
|
throw std::invalid_argument("GradCheck::fillGradArrays: invalid type of loss function !");
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
bool GradCheck::checkGrad(ops::DeclarableOp& opFF, ops::DeclarableOp& opBP, const OpArgsHolder& argsHolderFF, const OpArgsHolder& argsHolderBP,
|
|
const std::vector<bool>& whatArrsToCheck, const std::vector<double>& idxRange, const LossFunc loss ) {
|
|
|
|
const int numInArrsFF = argsHolderFF.getNumInArrs(); // at the same time numInArrsFF = number of output arrays in opBP
|
|
const int numInGradArrsBP = argsHolderBP.getNumInArrs() - numInArrsFF; // because argsHolderBP.getNumInArrs() = numInArrsFF + numInGradArrsBP
|
|
const std::vector<NDArray*>& inArrsFF = argsHolderFF.getInArrs();
|
|
const std::vector<NDArray*>& inArrsBP = argsHolderBP.getInArrs();
|
|
|
|
// fill input gradient arrays in accordance to kind of loss function
|
|
fillGradArrays(loss, std::vector<NDArray*>(&inArrsBP[numInArrsFF], &inArrsBP[numInArrsFF + numInGradArrsBP]));
|
|
|
|
// back prop pass
|
|
ResultSet* outArrsBP = opBP.execute(argsHolderBP); // number of output arrays in back prop = numInArrsFF;
|
|
|
|
NDArray tmpScalar(nd4j::DataType::DOUBLE, inArrsFF[0]->getContext()); // scalar = 0
|
|
|
|
for(int i = 0; i < numInArrsFF; ++i) { // loop through input array
|
|
|
|
if(!whatArrsToCheck.empty() && static_cast<bool>(whatArrsToCheck[i]) == false)
|
|
continue;
|
|
|
|
const Nd4jLong idxStart = static_cast<Nd4jLong>(idxRange[0] * inArrsFF[i]->lengthOf());
|
|
const Nd4jLong idxEnd = static_cast<Nd4jLong>(idxRange[1] * inArrsFF[i]->lengthOf());
|
|
|
|
for(Nd4jLong j = idxStart; j < idxEnd; ++j) { // loop through all elements for current array
|
|
|
|
const double orig = inArrsFF[i]->e<double>(j);
|
|
|
|
// add epsilon, feed forward
|
|
inArrsFF[i]->p<double>(j, orig + EPSILON);
|
|
ResultSet* outArrsFF = opFF.execute(argsHolderFF);
|
|
int numOutArrs = outArrsFF->size();
|
|
double scorePlus = 0.;
|
|
|
|
for(int k = 0; k < numOutArrs; ++k) { // loop through output arrays
|
|
if(loss == SUM)
|
|
outArrsFF->at(k)->reduceNumber(reduce::Sum, tmpScalar);
|
|
else
|
|
outArrsFF->at(k)->reduceNumber(reduce::Mean, tmpScalar);
|
|
scorePlus += tmpScalar.e<double>(0);
|
|
}
|
|
delete outArrsFF;
|
|
|
|
// subtract epsilon, feed forward
|
|
inArrsFF[i]->p<double>(j, orig - EPSILON);
|
|
outArrsFF = opFF.execute(argsHolderFF);
|
|
double scoreMinus = 0.;
|
|
|
|
for(int k = 0; k < numOutArrs; ++k) { // loop through output arrays
|
|
if(loss == SUM)
|
|
outArrsFF->at(k)->reduceNumber(reduce::Sum, tmpScalar);
|
|
else
|
|
outArrsFF->at(k)->reduceNumber(reduce::Mean, tmpScalar);
|
|
scoreMinus += tmpScalar.e<double>(0);
|
|
}
|
|
delete outArrsFF;
|
|
|
|
// restore initial element value
|
|
inArrsFF[i]->p<double>(j, orig);
|
|
|
|
// calculate numerical gradient
|
|
const double numericalGrad = (scorePlus - scoreMinus) / (2 * EPSILON);
|
|
if(std::isnan(numericalGrad) || std::isinf(numericalGrad)) {
|
|
printf("GradCheck::checkGrad: got wrong value for numerical gradient for input array # %i and its element at position %lld ! \n", i, j);
|
|
throw std::runtime_error("");
|
|
}
|
|
|
|
// get analytical gradient
|
|
const double analyticGrad = outArrsBP->at(i)->e<double>(j);
|
|
if(std::isnan(analyticGrad) || std::isinf(analyticGrad)) {
|
|
printf("GradCheck::checkGrad: got wrong value for analytical gradient for input array # %i and its element at position %lld ! \n", i, j);
|
|
throw std::runtime_error("");
|
|
}
|
|
|
|
// printf("num = %.5f, ana = %.5f\n", numericalGrad, analyticGrad);
|
|
|
|
// calculate relative error
|
|
double relError;
|
|
if(numericalGrad == 0. && analyticGrad == 0.)
|
|
relError = 0.;
|
|
else
|
|
relError = math::nd4j_abs<double>(analyticGrad - numericalGrad) / (math::nd4j_abs<double>(analyticGrad) + math::nd4j_abs<double>(numericalGrad));
|
|
|
|
// verify result
|
|
if(relError > MAXRELERR || std::isnan(relError)) {
|
|
|
|
if(math::nd4j_abs<double>(analyticGrad - numericalGrad) < MINABSERR)
|
|
continue;
|
|
printf("numericalGrad = %f, analyticGrad = %f \n", numericalGrad, analyticGrad);
|
|
printf("GradCheck::checkGrad: got RELERROR = %f > MAXRELERROR(%f) for input array # %i and its element at position %lld ! \n", relError, MAXRELERR, i, j);
|
|
delete outArrsBP;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
delete outArrsBP;
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|