cavis/libnd4j/include/loops/cuda/pairwise_bool.cu
raver119 589401477d
[WIP] bunch of improvements (#257)
* - profiling bias_add op
- add some docementation

Signed-off-by: Yurii <yurii@skymind.io>

* - minor change

Signed-off-by: Yurii <yurii@skymind.io>

* - provide addBias cuda kernel

Signed-off-by: Yurii <yurii@skymind.io>

* - improve shape::getIndexOfffset and change its signature

Signed-off-by: Yurii <yurii@skymind.io>

* - same as previous

Signed-off-by: Yurii <yurii@skymind.io>

* - improve and change signature in some shape:: stuff which has to do with calculation of offsets for array elements

Signed-off-by: Yurii <yurii@skymind.io>

* - minor changes in flatten

Signed-off-by: Yurii <shyrma@skymind.io>

* - add function shape::getIndexOffsetOrdered

Signed-off-by: Yurii <shyrma@skymind.io>

* - correct shape::getIndexOffsetOrdered()

Signed-off-by: Yurii <shyrma@skymind.io>

* - move getIndexOffsetOrdered to flatten.h header in order to isolate this function

Signed-off-by: Yurii <shyrma@skymind.io>
2019-09-11 20:12:09 +03:00

174 lines
5.5 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com), created on 08.11.2018
#ifndef PAIRWISE_BOOL_CU
#define PAIRWISE_BOOL_CU
#include "../pairwise_bool.h"
using namespace simdOps;
////////////////////////////////////////////////////////////////////////////////
template <typename X, typename Z, typename OpType>
__global__ static void pairwiseSimpleShaped(void* vx, Nd4jLong *xShapeInfo,
void *vy, Nd4jLong *yShapeInfo,
void *vz, Nd4jLong *zShapeInfo,
void *vextraParams) {
auto x = reinterpret_cast<X*>(vx);
auto y = reinterpret_cast<X*>(vy);
auto z = reinterpret_cast<Z*>(vz);
auto extraParams = reinterpret_cast<X*>(vextraParams);
int tid = blockIdx.x * blockDim.x + threadIdx.x;
__shared__ int xEws;
__shared__ int yEws;
__shared__ int zEws;
__shared__ char xOrder;
__shared__ char yOrder;
__shared__ char zOrder;
__shared__ Nd4jLong len;
if (threadIdx.x == 0) {
xEws = shape::elementWiseStride(xShapeInfo);
yEws = shape::elementWiseStride(yShapeInfo);
zEws = shape::elementWiseStride(zShapeInfo);
xOrder = shape::order(xShapeInfo);
yOrder = shape::order(yShapeInfo);
zOrder = shape::order(zShapeInfo);
len = shape::length(xShapeInfo);
}
__syncthreads();
if (xEws >= 1 && yEws >= 1 && zEws >= 1 && xOrder == yOrder && xOrder == zOrder) {
for (Nd4jLong i = tid; i < len; i += gridDim.x * blockDim.x) {
z[i * zEws] = OpType::op(x[i * xEws], y[i * yEws], extraParams);
}
}
else if (vx == vz) {
for (Nd4jLong i = tid; i < len; i += gridDim.x * blockDim.x) {
auto xOffset = shape::getIndexOffset(i, xShapeInfo);
auto yOffset = shape::getIndexOffset(i, yShapeInfo);
z[xOffset] = OpType::op(x[xOffset], y[yOffset], extraParams);
}
}
else {
for (Nd4jLong i = tid; i < len; i += gridDim.x * blockDim.x) {
auto xOffset = shape::getIndexOffset(i, xShapeInfo);
auto yOffset = shape::getIndexOffset(i, yShapeInfo);
auto zOffset = shape::getIndexOffset(i, zShapeInfo);
z[zOffset] = OpType::op(x[xOffset], y[yOffset], extraParams);
}
}
}
namespace functions {
namespace pairwise_transforms {
////////////////////////////////////////////////////////////////////////////////
template<typename X, typename Z>
template<typename OpType>
void _CUDA_H PairWiseBoolTransform<X,Z>::intermediateShaped(dim3& launchDims, cudaStream_t *stream,
void *vx, Nd4jLong *xShapeInfo,
void *vy, Nd4jLong *yShapeInfo,
void *vz, Nd4jLong *zShapeInfo,
void *vextraParams){
pairwiseSimpleShaped<X, Z, OpType><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, vextraParams);
}
////////////////////////////////////////////////////////////////////////////////
template<typename X, typename Y>
void PairWiseBoolTransform<X,Y>::executeCudaShaped(dim3& launchDims, cudaStream_t *stream, int opNum, void *vx, Nd4jLong *xShapeInfo, void *vy, Nd4jLong *yShapeInfo, void *vz, Nd4jLong *zShapeInfo, void *vextraParams) {
auto xType = nd4j::DataTypeUtils::fromT<X>();
auto yType = nd4j::DataTypeUtils::fromT<Y>();
DISPATCH_BY_OPNUM_TT(intermediateShaped, PARAMS(launchDims, stream, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, vextraParams), PAIRWISE_BOOL_OPS);
}
template<typename X, typename Y>
void PairWiseBoolTransform<X,Y>::exec(
const int opNum,
void *dx,
Nd4jLong *xShapeBuffer,
void *y,
Nd4jLong *yShapeBuffer,
void *result,
Nd4jLong *resultShapeBuffer,
void *extraParams) {
}
template<typename X, typename Y>
void PairWiseBoolTransform<X,Y>::exec(
const int opNum,
void *dx,
Nd4jLong xStride,
void *y,
Nd4jLong yStride,
void *result,
Nd4jLong resultStride,
void *extraParams,
Nd4jLong n) {
}
template<typename X, typename Y>
template<typename OpType>
void PairWiseBoolTransform<X,Y>::exec(
void *vx,
Nd4jLong* xShapeBuffer,
void *vy,
Nd4jLong* yShapeBuffer,
void *vresult,
Nd4jLong* resultShapeBuffer,
void *vextraParams) {
}
template<typename X, typename Y>
template<typename OpType>
void PairWiseBoolTransform<X,Y>::exec(void *vx,
Nd4jLong xStride,
void *vy,
Nd4jLong yStride,
void *vresult,
Nd4jLong resultStride,
void *vextraParams,
const Nd4jLong n) {
}
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT PairWiseBoolTransform, , LIBND4J_TYPES, BOOL_TYPES);
}
}
#endif // PAIRWISE_BOOL_CU