569 lines
26 KiB
Plaintext
569 lines
26 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
|
|
#include "cudnnUtils.h"
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace platforms {
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void batchnormCUDNN(const LaunchContext* context,
|
|
const NDArray* input, const NDArray* mean, const NDArray* variance,
|
|
const NDArray* gamma, const NDArray* beta,
|
|
NDArray* output,
|
|
const double epsilon, const bool isSpatialMode) {
|
|
|
|
|
|
// input, output -> 4D:nchw, 5D:ncdhw
|
|
// mean, variance, gamma, beta -> 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for BATCHNORM_MODE_SPATIAL mode
|
|
// -> 1xCxHxW for 4D and 1xCxDxHxW for 5D for BATCHNORM_MODE_PER_ACTIVATION mode
|
|
|
|
const cudnnDataType_t dataType = cudnnDataType(input->dataType());
|
|
|
|
const int xRank = input->rankOf();
|
|
|
|
auto handle = reinterpret_cast<cudnnHandle_t *>(context->getCuDnnHandle());
|
|
cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream());
|
|
if (err != 0) throw sd::cuda_exception::build("conv2dCUDNN: can't set stream for cuDNN", err);
|
|
|
|
const std::vector<int> xShape = input->getShapeAsVectorInt(); // input and output have same shapes
|
|
|
|
std::vector<int> paramsShape, paramsStrides; // mean, variance, gamma and beta have same shapes
|
|
if(isSpatialMode) { // 1xCx1x1
|
|
const int iC = mean->lengthOf();
|
|
const int stride0 = mean->strideAt(0);
|
|
paramsShape = xRank == 4 ? std::vector<int>({1, iC, 1, 1}) : std::vector<int>({1, iC, 1, 1, 1});
|
|
paramsStrides = xRank == 4 ? std::vector<int>({iC*stride0, stride0, 1, 1}) : std::vector<int>({iC*stride0, stride0, 1, 1, 1});
|
|
}
|
|
else {
|
|
paramsShape = mean->getShapeAsVectorInt();
|
|
paramsStrides = xRank == 4 ? std::vector<int>({(int)mean->strideAt(0), (int)mean->strideAt(1), (int)mean->strideAt(2), (int)mean->strideAt(3)}) : std::vector<int>({(int)mean->strideAt(0), (int)mean->strideAt(1), (int)mean->strideAt(2), (int)mean->strideAt(3), (int)mean->strideAt(4)});
|
|
}
|
|
|
|
std::vector<int> xStrides = {(int)input->strideAt(0), (int)input->strideAt(1), (int)input->strideAt(2), (int)input->strideAt(3)};
|
|
std::vector<int> zStrides = {(int)output->strideAt(0), (int)output->strideAt(1), (int)output->strideAt(2), (int)output->strideAt(3)};
|
|
|
|
if(xRank > 4) { // 5D
|
|
xStrides.push_back((int)input->strideAt(4));
|
|
zStrides.push_back((int)output->strideAt(4));
|
|
}
|
|
|
|
cudnnTensorFormat_t format = CUDNN_TENSOR_NCHW;
|
|
|
|
// input descriptor
|
|
cudnnTensorDescriptor_t x;
|
|
cudnnCreateTensorDescriptor(&x);
|
|
if(input->ews() == 1)
|
|
err = cudnnSetTensorNdDescriptorEx(x, format, dataType, xRank, xShape.data());
|
|
else
|
|
err = cudnnSetTensorNdDescriptor(x, dataType, xRank, xShape.data(), xStrides.data());
|
|
if (err != 0) throw sd::cuda_exception::build("batchnormCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for input failed", err);
|
|
|
|
// output descriptor
|
|
cudnnTensorDescriptor_t z;
|
|
cudnnCreateTensorDescriptor(&z);
|
|
if(output->ews() == 1)
|
|
err = cudnnSetTensorNdDescriptorEx(z, format, dataType, xRank, xShape.data());
|
|
else
|
|
err = cudnnSetTensorNdDescriptor(z, dataType, xRank, xShape.data(), zStrides.data());
|
|
if (err != 0) throw sd::cuda_exception::build("batchnormCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for output failed", err);
|
|
|
|
// mean, variance, gamma and beta descriptor, the same descriptor for all of them
|
|
cudnnTensorDescriptor_t params;
|
|
cudnnCreateTensorDescriptor(¶ms);
|
|
if(mean->ews() == 1)
|
|
err = cudnnSetTensorNdDescriptorEx(params, format, dataType, xRank, paramsShape.data());
|
|
else
|
|
err = cudnnSetTensorNdDescriptor(params, dataType, xRank, paramsShape.data(), paramsStrides.data());
|
|
if (err != 0) throw sd::cuda_exception::build("batchnormCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for mean/variance/gamma/beta failed", err);
|
|
|
|
// provide scaling parameters
|
|
const float alpha32(1), beta32(0);
|
|
const double alpha64(1), beta64(0);
|
|
const void* ptrAlpha = output->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&alpha32) : reinterpret_cast<const void*>(&alpha64);
|
|
const void* ptrBeta = output->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&beta32) : reinterpret_cast<const void*>(&beta64);
|
|
|
|
NDArray::prepareSpecialUse({output}, {input, mean, variance, gamma, beta});
|
|
|
|
// calculations
|
|
err = cudnnBatchNormalizationForwardInference(*handle, isSpatialMode ? CUDNN_BATCHNORM_SPATIAL : CUDNN_BATCHNORM_PER_ACTIVATION,
|
|
ptrAlpha, ptrBeta,
|
|
x, input->specialBuffer(),
|
|
z, output->specialBuffer(),
|
|
params,
|
|
gamma->specialBuffer(), beta->specialBuffer(),
|
|
mean->specialBuffer(), variance->specialBuffer(), epsilon);
|
|
|
|
if (err != 0) throw sd::cuda_exception::build("batchnormCUDNN: cudnnBatchNormalizationForwardInference failed", err);
|
|
|
|
auto cudaErr = cudaStreamSynchronize(*context->getCudaStream());
|
|
if (cudaErr != 0)
|
|
throw cuda_exception::build("batchnormCUDNN: cudaStreamSynchronize failed !", cudaErr);
|
|
|
|
NDArray::registerSpecialUse({output}, {input, mean, variance, gamma, beta});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void batchnormBpCUDNN(const LaunchContext* context,
|
|
const NDArray* input, const NDArray* mean, const NDArray* variance, const NDArray* gamma, const NDArray* gradO,
|
|
NDArray* gradI, NDArray* gradG, NDArray* gradB,
|
|
const double epsilon, const bool isSpatialMode) {
|
|
|
|
// input, gradO, gradI -> 4D:nchw, 5D:ncdhw
|
|
// mean, variance, gamma, beta, gradM, gradV, gradG, gradB -> 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for BATCHNORM_MODE_SPATIAL mode
|
|
// -> 1xCxHxW for 4D and 1xCxDxHxW for 5D for BATCHNORM_MODE_PER_ACTIVATION mode
|
|
|
|
const cudnnDataType_t dataType = cudnnDataType(input->dataType());
|
|
|
|
const int xRank = input->rankOf();
|
|
|
|
auto handle = reinterpret_cast<cudnnHandle_t *>(context->getCuDnnHandle());
|
|
cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream());
|
|
if (err != 0) throw sd::cuda_exception::build("batchnormBpCUDNN: can't set stream for cuDNN", err);
|
|
|
|
const std::vector<int> xShape = input->getShapeAsVectorInt(); // input and output have same shapes
|
|
|
|
std::vector<int> paramsShape, paramsStrides; // mean, variance, gamma and beta have same shapes
|
|
if(isSpatialMode) { // 1xCx1x1
|
|
const int iC = mean->lengthOf();
|
|
const int stride0 = mean->strideAt(0);
|
|
paramsShape = xRank == 4 ? std::vector<int>({1, iC, 1, 1}) : std::vector<int>({1, iC, 1, 1, 1});
|
|
paramsStrides = xRank == 4 ? std::vector<int>({iC*stride0, stride0, 1, 1}) : std::vector<int>({iC*stride0, stride0, 1, 1, 1});
|
|
}
|
|
else {
|
|
paramsShape = mean->getShapeAsVectorInt();
|
|
paramsStrides = xRank == 4 ? std::vector<int>({(int)mean->strideAt(0), (int)mean->strideAt(1), (int)mean->strideAt(2), (int)mean->strideAt(3)}) : std::vector<int>({(int)mean->strideAt(0), (int)mean->strideAt(1), (int)mean->strideAt(2), (int)mean->strideAt(3), (int)mean->strideAt(4)});
|
|
}
|
|
|
|
std::vector<int> xStrides = {(int)input->strideAt(0), (int)input->strideAt(1), (int)input->strideAt(2), (int)input->strideAt(3)};
|
|
std::vector<int> dxStrides = {(int)gradI->strideAt(0), (int)gradI->strideAt(1), (int)gradI->strideAt(2), (int)gradI->strideAt(3)};
|
|
std::vector<int> dzStrides = {(int)gradO->strideAt(0), (int)gradO->strideAt(1), (int)gradO->strideAt(2), (int)gradO->strideAt(3)};
|
|
|
|
if(xRank > 4) { // 5D
|
|
xStrides.push_back((int)input->strideAt(4));
|
|
dxStrides.push_back((int)gradI->strideAt(4));
|
|
dzStrides.push_back((int)gradO->strideAt(4));
|
|
}
|
|
|
|
cudnnTensorFormat_t format = CUDNN_TENSOR_NCHW;
|
|
|
|
// input descriptor
|
|
cudnnTensorDescriptor_t x;
|
|
cudnnCreateTensorDescriptor(&x);
|
|
if(input->ews() == 1)
|
|
err = cudnnSetTensorNdDescriptorEx(x, format, dataType, xRank, xShape.data());
|
|
else
|
|
err = cudnnSetTensorNdDescriptor(x, dataType, xRank, xShape.data(), xStrides.data());
|
|
if (err != 0) throw sd::cuda_exception::build("batchnormBpCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for input failed", err);
|
|
|
|
// gradO descriptor
|
|
cudnnTensorDescriptor_t dz;
|
|
cudnnCreateTensorDescriptor(&dz);
|
|
if(gradO->ews() == 1)
|
|
err = cudnnSetTensorNdDescriptorEx(dz, format, dataType, xRank, xShape.data());
|
|
else
|
|
err = cudnnSetTensorNdDescriptor(dz, dataType, xRank, xShape.data(), dzStrides.data());
|
|
if (err != 0) throw sd::cuda_exception::build("batchnormBpCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for gradO failed", err);
|
|
|
|
// gradI descriptor
|
|
cudnnTensorDescriptor_t dx;
|
|
cudnnCreateTensorDescriptor(&dx);
|
|
if(input->ews() == 1)
|
|
err = cudnnSetTensorNdDescriptorEx(dx, format, dataType, xRank, xShape.data());
|
|
else
|
|
err = cudnnSetTensorNdDescriptor(dx, dataType, xRank, xShape.data(), dxStrides.data());
|
|
if (err != 0) throw sd::cuda_exception::build("batchnormBpCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for gradI failed", err);
|
|
|
|
// mean, variance, gamma, gradG and gradB descriptor, the same descriptor for all of them
|
|
cudnnTensorDescriptor_t params;
|
|
cudnnCreateTensorDescriptor(¶ms);
|
|
if(mean->ews() == 1)
|
|
err = cudnnSetTensorNdDescriptorEx(params, format, dataType, xRank, paramsShape.data());
|
|
else
|
|
err = cudnnSetTensorNdDescriptor(params, dataType, xRank, paramsShape.data(), paramsStrides.data());
|
|
if (err != 0) throw sd::cuda_exception::build("batchnormBpCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for mean/variance/gamma/gradG/gradB failed", err);
|
|
|
|
// provide scaling parameters
|
|
const float alpha32(1), beta32(0);
|
|
double alpha64(1), beta64(0);
|
|
const void* ptrAlpha = input->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&alpha32) : reinterpret_cast<const void*>(&alpha64);
|
|
const void* ptrBeta = input->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&beta32) : reinterpret_cast<const void*>(&beta64);
|
|
|
|
NDArray::prepareSpecialUse({gradI, gradG, gradB}, {input, mean, variance, gamma, gradO});
|
|
|
|
// calculations
|
|
// TODO: we can use cache here
|
|
err = cudnnBatchNormalizationBackward(*handle, isSpatialMode ? CUDNN_BATCHNORM_SPATIAL : CUDNN_BATCHNORM_PER_ACTIVATION,
|
|
ptrAlpha, ptrBeta, ptrAlpha, ptrBeta,
|
|
x, input->specialBuffer(),
|
|
dz, gradO->specialBuffer(),
|
|
dx, gradI->specialBuffer(),
|
|
params,
|
|
gamma->specialBuffer(), gradG->specialBuffer(), gradB->specialBuffer(),
|
|
epsilon,
|
|
nullptr/*mean->specialBuffer()*/, nullptr/*variance->specialBuffer()*/);
|
|
|
|
if (err != 0) throw sd::cuda_exception::build("batchnormBpCUDNN: cudnnBatchNormalizationBackward failed", err);
|
|
|
|
auto cudaErr = cudaStreamSynchronize(*context->getCudaStream());
|
|
if (cudaErr != 0)
|
|
throw cuda_exception::build("batchnormBpCUDNN: cudaStreamSynchronize failed !", cudaErr);
|
|
|
|
NDArray::registerSpecialUse({gradI, gradG, gradB}, {input, mean, variance, gamma, gradO});
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(batchnorm, ENGINE_CUDA) {
|
|
|
|
auto input = INPUT_VARIABLE(0);
|
|
auto mean = INPUT_VARIABLE(1);
|
|
auto variance = INPUT_VARIABLE(2);
|
|
NDArray* gamma = nullptr;
|
|
NDArray* beta = nullptr;
|
|
|
|
auto output = OUTPUT_VARIABLE(0);
|
|
|
|
const bool applyScale = (bool)INT_ARG(0);
|
|
const bool applyOffset = (bool)INT_ARG(1);
|
|
const double epsilon = T_ARG(0);
|
|
|
|
if(applyScale)
|
|
gamma = INPUT_VARIABLE(3);
|
|
if(applyOffset)
|
|
beta = INPUT_VARIABLE(3 + (int)applyScale);
|
|
|
|
const int numOfIntArgs = block.getIArguments()->size();
|
|
const int inRank = input->rankOf();
|
|
|
|
// get axes args to normalize input array over
|
|
std::vector<int> axes;
|
|
if(numOfIntArgs > 2)
|
|
for(int i = 2; i < numOfIntArgs; ++i)
|
|
axes.push_back(INT_ARG(i));
|
|
else
|
|
axes.push_back(inRank-1); // default dimension to reduce along is last dimension
|
|
|
|
const int numOfAxes = axes.size();
|
|
REQUIRE_TRUE(numOfAxes <= inRank, 0, "BATCHNORM CUDNN op: too big number of input axes to normalize over, expected number should be less or equal to rank of input array, but got %i and %i correspondingly !", numOfAxes, inRank);
|
|
|
|
// evaluate expected shape for mean, variance and gamma. These 3 arrays should have identical shapes
|
|
// for example if input shape is {2,3,4,5,6} and axes = {1,3}, then expected shape would be {1,3,1,5,1}, and if axes = {3}, then expected shape would be {5}
|
|
std::vector<Nd4jLong> expShape;
|
|
if(numOfAxes == 1)
|
|
expShape.push_back(input->sizeAt(axes[0]));
|
|
else { // get, for example, something like {1, inputDim1, 1, inputDim3, 1} if axes = {1, 3}
|
|
expShape = std::vector<Nd4jLong>(inRank, 1);
|
|
for(uint i = 0; i < numOfAxes; ++i)
|
|
expShape[axes[i]] = input->sizeAt(axes[i]);
|
|
}
|
|
|
|
REQUIRE_TRUE(mean->isSameShape(expShape) , 0, "BATCHNORM CUDNN op: wrong shape of mean array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(mean).c_str());
|
|
REQUIRE_TRUE(variance->isSameShape(expShape), 0, "BATCHNORM CUDNN op: wrong shape of variance array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(variance).c_str());
|
|
if(gamma)
|
|
REQUIRE_TRUE(gamma->isSameShape(expShape), 0, "BATCHNORM CUDNN op: wrong shape of gamma array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(gamma).c_str());
|
|
if(beta)
|
|
REQUIRE_TRUE(beta->isSameShape(expShape), 0, "BATCHNORM CUDNN op: wrong shape of beta array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(beta).c_str());
|
|
|
|
// types of all input arrays should be the same
|
|
for(int i = 1; i < block.width(); ++i)
|
|
REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM CUDNN op: types of all input arrays should be the same !");
|
|
|
|
// cudnn supports NCHW format only
|
|
const bool needPermut = axes.size() == 1 && mean->lengthOf() == input->sizeAt(-1);
|
|
|
|
if(needPermut) { // if NHWC
|
|
std::vector<int> perm = inRank == 4 ? std::vector<int>({0, 3, 1, 2}) : std::vector<int>({0, 4, 1, 2, 3}); // NHWC -> NCHW
|
|
input = new NDArray(input->permute(perm));
|
|
output = new NDArray(output->permute(perm));
|
|
}
|
|
|
|
// cudnn requires gamma and beta to be non-nullptr
|
|
if(!applyScale) {
|
|
gamma = new NDArray(mean);
|
|
*gamma = 1;
|
|
}
|
|
if(!applyOffset) {
|
|
beta = new NDArray(mean);
|
|
*beta = 0;
|
|
}
|
|
|
|
// calculations
|
|
batchnormCUDNN(block.launchContext(), input, mean, variance, gamma, beta, output, epsilon, axes.size() == 1);
|
|
|
|
if(needPermut) {
|
|
delete input;
|
|
delete output;
|
|
}
|
|
|
|
if(!applyScale)
|
|
delete gamma;
|
|
|
|
if(!applyOffset)
|
|
delete beta;
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_CHECK(batchnorm, ENGINE_CUDA) {
|
|
|
|
const bool applyScale = (bool)INT_ARG(0);
|
|
const bool applyOffset = (bool)INT_ARG(1);
|
|
|
|
NDArray* input = INPUT_VARIABLE(0);
|
|
NDArray* mean = INPUT_VARIABLE(1);
|
|
NDArray* variance = INPUT_VARIABLE(2);
|
|
NDArray* gamma = applyScale ? INPUT_VARIABLE(3) : nullptr;
|
|
NDArray* beta = applyOffset ? INPUT_VARIABLE(3 + (int)applyScale) : nullptr;
|
|
|
|
const int numOfIntArgs = block.getIArguments()->size();
|
|
const int xRank = input->rankOf();
|
|
|
|
// *********************************** //
|
|
if(xRank != 4 && xRank != 5)
|
|
return false;
|
|
|
|
// *********************************** //
|
|
const bool badType = input->dataType() != DataType::DOUBLE && input->dataType() != DataType::FLOAT32 && input->dataType() != DataType::HALF;
|
|
if(badType)
|
|
return false;
|
|
|
|
// *********************************** //
|
|
// get axes args to normalize input array over
|
|
std::vector<int> axes;
|
|
if(numOfIntArgs > 2)
|
|
for(int i = 2; i < numOfIntArgs; ++i)
|
|
axes.push_back(INT_ARG(i));
|
|
else
|
|
axes.push_back(xRank-1); // default dimension to reduce along is last dimension
|
|
|
|
if(axes.size() != 1 && axes.size() != 3 && axes.size() != 4)
|
|
return false;
|
|
|
|
// *********************************** //
|
|
bool allParamsHaveSameShapeAndStrides = shape::haveSameShapeAndStrides(mean->shapeInfo(), variance->shapeInfo());
|
|
if(gamma)
|
|
allParamsHaveSameShapeAndStrides &= shape::haveSameShapeAndStrides(mean->shapeInfo(), gamma->shapeInfo());
|
|
if(beta)
|
|
allParamsHaveSameShapeAndStrides &= shape::haveSameShapeAndStrides(mean->shapeInfo(), beta->shapeInfo());
|
|
|
|
if(!allParamsHaveSameShapeAndStrides)
|
|
return false;
|
|
|
|
// *********************************** //
|
|
bool isFormatGood = false;
|
|
if(axes.size() == 1)
|
|
isFormatGood = mean->lengthOf() == input->sizeAt(1) || mean->lengthOf() == input->sizeAt(-1); // mean [C]
|
|
else {
|
|
auto inputShapeModif = input->getShapeAsVector(); // [dim0,dim1,dim2,dim3] 4D or [dim0,dim1,dim2,dim3,dim4]
|
|
inputShapeModif[0] = 1;
|
|
isFormatGood = mean->isSameShape(inputShapeModif); // mean [1,dim1,dim2,dim3] 4D or [1,dim1,dim2,dim3,dim4]
|
|
}
|
|
if(!isFormatGood)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(batchnorm_bp, ENGINE_CUDA) {
|
|
|
|
NDArray* input = INPUT_VARIABLE(0);
|
|
NDArray* mean = INPUT_VARIABLE(1);
|
|
NDArray* variance = INPUT_VARIABLE(2);
|
|
NDArray* gamma = nullptr;
|
|
NDArray* beta = nullptr;
|
|
NDArray* gradO = INPUT_VARIABLE(block.width() - 1); // next epsilon
|
|
|
|
NDArray* gradI = OUTPUT_VARIABLE(0);
|
|
NDArray* gradM = OUTPUT_VARIABLE(1);
|
|
NDArray* gradV = OUTPUT_VARIABLE(2);
|
|
NDArray* gradG = nullptr;
|
|
NDArray* gradB = nullptr;
|
|
|
|
const bool applyScale = (bool)INT_ARG(0);
|
|
const bool applyOffset = (bool)INT_ARG(1);
|
|
const float epsilon = T_ARG(0);
|
|
|
|
if(applyScale) {
|
|
gamma = INPUT_VARIABLE(3);
|
|
gradG = OUTPUT_VARIABLE(3);
|
|
}
|
|
if(applyOffset) {
|
|
beta = INPUT_VARIABLE(3 + (int)applyScale);
|
|
gradB = OUTPUT_VARIABLE(3 + (int)applyScale);
|
|
}
|
|
|
|
const int numOfIntArgs = block.getIArguments()->size();
|
|
const int inRank = input->rankOf();
|
|
|
|
// get axes args to normalize input array over
|
|
std::vector<int> axes;
|
|
if(numOfIntArgs > 2)
|
|
for(int i = 2; i < numOfIntArgs; ++i)
|
|
axes.push_back(INT_ARG(i));
|
|
else
|
|
axes.push_back(inRank-1); // default dimension to reduce along is last dimension
|
|
|
|
const int numOfAxes = axes.size();
|
|
REQUIRE_TRUE(numOfAxes <= inRank, 0, "BATCHNORM_BP CUDNN op: too big number of input axes to normalize over, expected number should be less or equal to rank of input array, but got %i and %i correspondingly !", numOfAxes, inRank);
|
|
|
|
// evaluate expected shape for mean, variance and gamma. These 3 arrays should have identical shapes
|
|
// for example if input shape is {2,3,4,5,6} and axes = {1,3}, then expected shape would be {1,3,1,5,1}, and if axes = {3}, then expected shape would be {5}
|
|
std::vector<Nd4jLong> expShape;
|
|
if(numOfAxes == 1)
|
|
expShape.push_back(input->sizeAt(axes[0]));
|
|
else { // get, for example, something like {1, inputDim1, 1, inputDim3, 1} if axes = {1, 3}
|
|
expShape = std::vector<Nd4jLong>(inRank, 1);
|
|
for(uint i = 0; i < numOfAxes; ++i)
|
|
expShape[axes[i]] = input->sizeAt(axes[i]);
|
|
}
|
|
|
|
REQUIRE_TRUE(mean->isSameShape(expShape), 0, "BATCHNORM_BP CUDNN op: wrong shape of mean array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(mean).c_str());
|
|
REQUIRE_TRUE(variance->isSameShape(expShape), 0, "BATCHNORM_BP CUDNN op: wrong shape of variance array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(variance).c_str());
|
|
if(gamma)
|
|
REQUIRE_TRUE(gamma->isSameShape(expShape), 0, "BATCHNORM_BP CUDNN op: wrong shape of gamma array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(gamma).c_str());
|
|
if(beta)
|
|
REQUIRE_TRUE(beta->isSameShape(expShape), 0, "BATCHNORM_BP CUDNN op: wrong shape of beta array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(beta).c_str());
|
|
|
|
REQUIRE_TRUE(input->isSameShape(gradO), 0, "BATCHNORM_BP CUDNN op: wrong shape of output gradients array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(input).c_str(), ShapeUtils::shapeAsString(gradO).c_str());
|
|
|
|
// types of all input arrays should be the same (except gradO)
|
|
for(int i = 1; i < block.width() - 2; ++i)
|
|
REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_BP CUDNN op: types of arrays (input, mean, variance, gamma, beta) should be the same !");
|
|
|
|
// cudnn supports NCHW format only
|
|
const bool needPermut = axes.size() == 1 && mean->lengthOf() != input->sizeAt(1);
|
|
|
|
if(needPermut) { // if NHWC
|
|
std::vector<int> perm = inRank == 4 ? std::vector<int>({0, 3, 1, 2}) : std::vector<int>({0, 4, 1, 2, 3}); // NHWC -> NCHW
|
|
input = new NDArray(input->permute(perm));
|
|
gradO = new NDArray(gradO->permute(perm));
|
|
gradI = new NDArray(gradI->permute(perm));
|
|
}
|
|
|
|
// cudnn requires gamma, gradG, gradB to be non-nullptr
|
|
if(!applyScale) {
|
|
gamma = new NDArray(mean);
|
|
gradG = new NDArray(mean);
|
|
*gamma = 1;
|
|
}
|
|
if(!applyOffset)
|
|
gradB = new NDArray(mean);
|
|
|
|
// calculations
|
|
batchnormBpCUDNN(block.launchContext(), input, mean, variance, gamma, gradO, gradI, gradG, gradB, epsilon, axes.size() == 1);
|
|
|
|
*gradM = 0; // put zeros so far
|
|
*gradV = 0; // put zeros so far
|
|
|
|
if(needPermut) {
|
|
delete input;
|
|
delete gradO;
|
|
delete gradI;
|
|
}
|
|
|
|
if(!applyScale) {
|
|
delete gamma;
|
|
delete gradG;
|
|
}
|
|
|
|
if(!applyOffset)
|
|
delete gradB;
|
|
|
|
return Status::OK();
|
|
|
|
}
|
|
|
|
PLATFORM_CHECK(batchnorm_bp, ENGINE_CUDA) {
|
|
|
|
NDArray* input = INPUT_VARIABLE(0);
|
|
NDArray* mean = INPUT_VARIABLE(1);
|
|
NDArray* variance = INPUT_VARIABLE(2);
|
|
NDArray* gamma = nullptr;
|
|
NDArray* beta = nullptr;
|
|
NDArray* gradO = INPUT_VARIABLE(block.width() - 1); // next epsilon
|
|
|
|
NDArray* gradI = OUTPUT_VARIABLE(0);
|
|
NDArray* gradM = OUTPUT_VARIABLE(1);
|
|
NDArray* gradV = OUTPUT_VARIABLE(2);
|
|
NDArray* gradG = nullptr;
|
|
NDArray* gradB = nullptr;
|
|
|
|
const int numOfIntArgs = block.getIArguments()->size();
|
|
const int xRank = input->rankOf();
|
|
|
|
// *********************************** //
|
|
if(xRank != 4 && xRank != 5)
|
|
return false;
|
|
|
|
// *********************************** //
|
|
const bool badType = input->dataType() != DataType::DOUBLE && input->dataType() != DataType::FLOAT32 && input->dataType() != DataType::HALF;
|
|
if(badType)
|
|
return false;
|
|
|
|
// *********************************** //
|
|
// get axes args to normalize input array over
|
|
std::vector<int> axes;
|
|
if(numOfIntArgs > 2)
|
|
for(int i = 2; i < numOfIntArgs; ++i)
|
|
axes.push_back(INT_ARG(i));
|
|
else
|
|
axes.push_back(xRank-1); // default dimension to reduce along is last dimension
|
|
|
|
if(axes.size() != 1 && axes.size() != 3 && axes.size() != 4)
|
|
return false;
|
|
|
|
// *********************************** //
|
|
bool allParamsHaveSameShapeAndStrides = shape::haveSameShapeAndStrides(mean->shapeInfo(), variance->shapeInfo());
|
|
if(gamma)
|
|
allParamsHaveSameShapeAndStrides &= shape::haveSameShapeAndStrides(mean->shapeInfo(), gamma->shapeInfo());
|
|
if(gradG)
|
|
allParamsHaveSameShapeAndStrides &= shape::haveSameShapeAndStrides(mean->shapeInfo(), gradG->shapeInfo());
|
|
if(gradB)
|
|
allParamsHaveSameShapeAndStrides &= shape::haveSameShapeAndStrides(mean->shapeInfo(), gradB->shapeInfo());
|
|
|
|
if(!allParamsHaveSameShapeAndStrides)
|
|
return false;
|
|
|
|
// *********************************** //
|
|
bool isFormatGood = false;
|
|
if(axes.size() == 1)
|
|
isFormatGood = mean->lengthOf() == input->sizeAt(1) || mean->lengthOf() == input->sizeAt(-1); // mean [C]
|
|
else {
|
|
auto inputShapeModif = input->getShapeAsVector(); // [dim0,dim1,dim2,dim3] 4D or [dim0,dim1,dim2,dim3,dim4]
|
|
inputShapeModif[0] = 1;
|
|
isFormatGood = mean->isSameShape(inputShapeModif); // mean [1,dim1,dim2,dim3] 4D or [1,dim1,dim2,dim3,dim4]
|
|
}
|
|
if(!isFormatGood)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
}
|