* initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * some minor singleton changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * more iterations Signed-off-by: raver119 <raver119@gmail.com> * more singletons updated Signed-off-by: raver119 <raver119@gmail.com> * more singletons updated Signed-off-by: raver119 <raver119@gmail.com> * more changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * CUDA updates Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Java side update Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one commented out test Signed-off-by: raver119@gmail.com <raver119@gmail.com>
DL4J/DataVec: Fix Yolo2OutputLayer and ObjectDetectionRecordReader support for NHWC data format (#483)
DL4J/DataVec: Fix Yolo2OutputLayer and ObjectDetectionRecordReader support for NHWC data format (#483)
Monorepo of Deeplearning4j
Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:
- https://github.com/eclipse/deeplearning4j/tree/master/libnd4j
- https://github.com/eclipse/deeplearning4j/tree/master/nd4j
- https://github.com/eclipse/deeplearning4j/tree/master/datavec
- https://github.com/eclipse/deeplearning4j/tree/master/arbiter
- https://github.com/eclipse/deeplearning4j/tree/master/nd4s
- https://github.com/eclipse/deeplearning4j/tree/master/rl4j
- https://github.com/eclipse/deeplearning4j/tree/master/scalnet
- https://github.com/eclipse/deeplearning4j/tree/master/pydl4j
- https://github.com/eclipse/deeplearning4j/tree/master/jumpy
- https://github.com/eclipse/deeplearning4j/tree/master/pydatavec
To build everything, we can use commands like
./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx
or
mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true
An example of GPU "CC" or compute capability is 61 for Titan X Pascal.
Want some examples?
We have separate repository with various examples available: https://github.com/eclipse/deeplearning4j-examples
In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/eclipse/deeplearning4j-examples/tree/master/tutorials
Description
Languages
Java
62.6%
C++
25.3%
Cuda
4.6%
Kotlin
3.2%
PureBasic
1.8%
Other
2.3%