168 lines
7.6 KiB
C++
168 lines
7.6 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 29.08.2018
|
|
//
|
|
|
|
#include <system/op_boilerplate.h>
|
|
#if NOT_EXCLUDED(OP_sparse_softmax_cross_entropy_loss_with_logits)
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include <ops/declarable/generic/helpers/ScatterHelper.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
CUSTOM_OP_IMPL(sparse_softmax_cross_entropy_loss_with_logits, 2, 1, false, 0, 0) {
|
|
auto labels = INPUT_VARIABLE(0);
|
|
auto logits = INPUT_VARIABLE(1);
|
|
|
|
auto output = OUTPUT_VARIABLE(0);
|
|
|
|
const int labelsRank = labels->rankOf();
|
|
const int logitsRank = logits->rankOf();
|
|
|
|
// input validation
|
|
REQUIRE_TRUE(labelsRank == logitsRank - 1, 0, "SPARSE_SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS OP: input arrays should satisfy relation (labels_rank = logits_rank - 1), but got labels_rank = %i and logits_rank = %i instead !", labelsRank, logitsRank);
|
|
|
|
std::vector<Nd4jLong> labelsShape = labels->getShapeAsVector(); // this is correct
|
|
std::vector<Nd4jLong> logitsShape = logits->getShapeAsVector();
|
|
logitsShape.pop_back();
|
|
bool equalSoft = logitsShape == labelsShape;
|
|
|
|
REQUIRE_TRUE(equalSoft, 0, "SPARSE_SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS OP: wrong shape of labels array, its shape should be the same as logits shape with last dimension excluded, however got labels_shape = %s and logits_shape = %s instead !", ShapeUtils::shapeAsString(labelsShape).c_str(), ShapeUtils::shapeAsString(logitsShape).c_str());
|
|
|
|
std::vector<int> dimension = {-1};
|
|
|
|
auto maxAlongDim = logits->reduceAlongDimension(reduce::Max, dimension, true);
|
|
auto logitsExp = (*logits - maxAlongDim).transform(transform::Exp, nullptr);
|
|
auto logSoftMax = -(( logitsExp / logitsExp.reduceAlongDimension(reduce::Sum, dimension, true) ).transform(transform::Log));
|
|
|
|
helpers::scatterForLoss(block.launchContext(), *labels, logSoftMax, *output, false);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
DECLARE_TYPES(sparse_softmax_cross_entropy_loss_with_logits) {
|
|
|
|
getOpDescriptor()->setAllowedInputTypes(0, {ALL_INTS})->setAllowedInputTypes(1, {ALL_FLOATS})->setAllowedOutputTypes({ALL_FLOATS});
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
DECLARE_SHAPE_FN(sparse_softmax_cross_entropy_loss_with_logits) {
|
|
|
|
auto labelsShapeInfo = inputShape->at(0);
|
|
auto logitsShapeInfo = inputShape->at(1);
|
|
|
|
REQUIRE_TRUE(labelsShapeInfo[0] == logitsShapeInfo[0] - 1, 0, "SPARSE_SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS OP: input arrays should satisfy relation (labels_rank = logits_rank - 1), but got labels_rank = %i and logits_rank = %i instead !", labelsShapeInfo[0], logitsShapeInfo[0]);
|
|
|
|
bool equalSoft = true;
|
|
for (int i = 1; i < labelsShapeInfo[0]; ++i)
|
|
if (labelsShapeInfo[i] != logitsShapeInfo[i]) {
|
|
equalSoft = false;
|
|
break;
|
|
}
|
|
|
|
REQUIRE_TRUE(equalSoft, 0, "SPARSE_SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS OP: wrong shape of labels array, its shape should be the same as logits shape with last dimension excluded, however got labels_shape = %s and logits_shape = %s instead !", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(logitsShapeInfo).c_str());
|
|
|
|
auto outShapeInfo = ShapeBuilders::copyShapeInfoAndType(labelsShapeInfo, logitsShapeInfo, false, block.getWorkspace());
|
|
|
|
return SHAPELIST(CONSTANT(outShapeInfo));
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
CUSTOM_OP_IMPL(sparse_softmax_cross_entropy_loss_with_logits_grad, 2, 1, false, 0, 0) {
|
|
|
|
auto labels = INPUT_VARIABLE(0);
|
|
auto logits = INPUT_VARIABLE(1);
|
|
|
|
auto dLdp = OUTPUT_VARIABLE(0); // dL/dlogits
|
|
|
|
const int labelsRank = labels->rankOf();
|
|
const int logitsRank = logits->rankOf();
|
|
|
|
// input validation
|
|
REQUIRE_TRUE(labelsRank == logitsRank - 1, 0, "SPARSE_SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS_GRAD OP: input arrays should satisfy relation (labels_rank = logits_rank - 1), but got labels_rank = %i and logits_rank = %i instead !", labelsRank, logitsRank);
|
|
|
|
std::vector<Nd4jLong> labelsShape = labels->getShapeAsVector(); // this is correct
|
|
std::vector<Nd4jLong> logitsShape = logits->getShapeAsVector();
|
|
logitsShape.pop_back();
|
|
bool equalSoft = logitsShape == labelsShape;
|
|
|
|
REQUIRE_TRUE(equalSoft, 0, "SPARSE_SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS_GRAD OP: wrong shape of labels array, its shape should be the same as logits shape with last dimension excluded, however got labels_shape = %s and logits_shape = %s instead !", ShapeUtils::shapeAsString(labelsShape).c_str(), ShapeUtils::shapeAsString(logitsShape).c_str());
|
|
|
|
std::vector<int> dimension = {-1};
|
|
|
|
NDArray softmax = (*logits - logits->reduceAlongDimension(reduce::Max, dimension, true)).transform(transform::Exp);
|
|
softmax /= softmax.reduceAlongDimension(reduce::Sum, dimension, true);
|
|
|
|
// dEdp = softmax - 1 (or 0)
|
|
dLdp->assign(softmax);
|
|
|
|
// subtract unities at appropriate indexes of dLdp array
|
|
helpers::scatterForLoss(block.launchContext(), *labels, *dLdp, *labels /*actually third array is unnecessary for gradient calculation*/, true);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
DECLARE_TYPES(sparse_softmax_cross_entropy_loss_with_logits_grad) {
|
|
|
|
getOpDescriptor()->setAllowedInputTypes(0, {ALL_INTS})->setAllowedInputTypes(1, {ALL_FLOATS})->setAllowedOutputTypes({ALL_FLOATS});
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
DECLARE_SHAPE_FN(sparse_softmax_cross_entropy_loss_with_logits_grad) {
|
|
|
|
auto labelsShapeInfo = inputShape->at(0);
|
|
auto logitsShapeInfo = inputShape->at(1);
|
|
|
|
REQUIRE_TRUE(labelsShapeInfo[0] == logitsShapeInfo[0] - 1, 0, "SPARSE_SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS_GRAD OP: input arrays should satisfy relation (labels_rank = logits_rank - 1), but got labels_rank = %i and logits_rank = %i instead !", labelsShapeInfo[0], logitsShapeInfo[0]);
|
|
|
|
bool equalSoft = true;
|
|
for (int i = 1; i < labelsShapeInfo[0]; ++i)
|
|
if (labelsShapeInfo[i] != logitsShapeInfo[i]) {
|
|
equalSoft = false;
|
|
break;
|
|
}
|
|
|
|
REQUIRE_TRUE(equalSoft, 0, "SPARSE_SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS_GRAD OP: wrong shape of labels array, its shape should be the same as logits shape with last dimension excluded, however got labels_shape = %s and logits_shape = %s instead !", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(logitsShapeInfo).c_str());
|
|
|
|
DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(logitsShapeInfo));
|
|
|
|
Nd4jLong *dLdpShapeInfo = ShapeBuilders::copyShapeInfoAndType(logitsShapeInfo, outType, false, block.getWorkspace());
|
|
|
|
return SHAPELIST(CONSTANT(dLdpShapeInfo));
|
|
}
|
|
|
|
|
|
|
|
}
|
|
}
|
|
|
|
#endif |