556 lines
32 KiB
C++
556 lines
32 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
#include <ops/declarable/PlatformHelper.h>
|
|
#include <ops/declarable/OpRegistrator.h>
|
|
#include <platform_boilerplate.h>
|
|
|
|
#include <helpers/MKLDNNStream.h>
|
|
#include "mkldnnUtils.h"
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace platforms {
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void deconv3dMKLDNN(const NDArray* input, const NDArray* weights, const NDArray* bias, NDArray* output,
|
|
const int kD, const int kH, const int kW, const int sD, const int sH, const int sW,
|
|
const int pD, const int pH, const int pW, const int dD, const int dH, const int dW,
|
|
const int isSameMode) {
|
|
|
|
// input [bS, iD, iH, iW, iC] ncdhw, mkl doesn't support format ndhwc
|
|
// weights [oC, iC, kD, kH, kW] always, mkl doesn't support weights format [kD, kH, kW, oC, iC]
|
|
// bias [oC], may be nullptr
|
|
|
|
// output [bS, oD, oH, oW, oC] ncdhw, mkl doesn't support format ndhwc
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
|
|
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv3d(true, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWoC, indWiC, indWkD);
|
|
|
|
dnnl::memory::dims strides = { sD, sH, sW };
|
|
dnnl::memory::dims padding = { pD, pH, pW };
|
|
dnnl::memory::dims padding_r = { (iD - 1) * sD - oD + kD - pD, (iH - 1) * sH - oH + kH - pH, (iW - 1) * sW - oW + kW - pW };
|
|
dnnl::memory::dims dilation = { dD-1, dH-1, dW-1 };
|
|
|
|
// input type
|
|
dnnl::memory::data_type xType;
|
|
if(input->dataType() == DataType::FLOAT32)
|
|
xType = dnnl::memory::data_type::f32;
|
|
else if(input->dataType() == DataType::HALF)
|
|
xType = dnnl::memory::data_type::f16;
|
|
else if(input->dataType() == DataType::UINT8)
|
|
xType = dnnl::memory::data_type::u8;
|
|
else
|
|
xType = dnnl::memory::data_type::s8;
|
|
|
|
// weights type
|
|
dnnl::memory::data_type wType = xType;
|
|
if(xType == dnnl::memory::data_type::u8)
|
|
wType = dnnl::memory::data_type::s8;
|
|
|
|
// output and bias type (have the same types)
|
|
dnnl::memory::data_type zType;
|
|
if(output->dataType() == DataType::FLOAT32)
|
|
zType = dnnl::memory::data_type::f32;
|
|
else if(output->dataType() == DataType::HALF)
|
|
zType = dnnl::memory::data_type::f16;
|
|
else if(output->dataType() == DataType::UINT8)
|
|
zType = dnnl::memory::data_type::u8;
|
|
else if(output->dataType() == DataType::INT8)
|
|
zType = dnnl::memory::data_type::s8;
|
|
else
|
|
zType = dnnl::memory::data_type::s32;
|
|
|
|
|
|
dnnl::memory::format_tag xFormat = dnnl::memory::format_tag::ncdhw;
|
|
dnnl::memory::format_tag wFormat = dnnl::memory::format_tag::oidhw;
|
|
|
|
dnnl::memory::dims xDims = {bS, iC, iD, iH, iW};
|
|
dnnl::memory::dims wDims = {oC, iC, kD, kH, kW};
|
|
dnnl::memory::dims zDims = {bS, oC, oD, oH, oW};
|
|
|
|
// memory descriptors for arrays
|
|
|
|
// input
|
|
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xFormat);
|
|
x_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
x_user_md.data.format_desc.blocking.strides[0] = input->stridesOf()[0];
|
|
x_user_md.data.format_desc.blocking.strides[1] = input->stridesOf()[1];
|
|
x_user_md.data.format_desc.blocking.strides[2] = input->stridesOf()[2];
|
|
x_user_md.data.format_desc.blocking.strides[3] = input->stridesOf()[3];
|
|
x_user_md.data.format_desc.blocking.strides[4] = input->stridesOf()[4];
|
|
|
|
// weights
|
|
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormat);
|
|
w_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
w_user_md.data.format_desc.blocking.strides[0] = weights->stridesOf()[0];
|
|
w_user_md.data.format_desc.blocking.strides[1] = weights->stridesOf()[1];
|
|
w_user_md.data.format_desc.blocking.strides[2] = weights->stridesOf()[2];
|
|
w_user_md.data.format_desc.blocking.strides[3] = weights->stridesOf()[3];
|
|
w_user_md.data.format_desc.blocking.strides[4] = weights->stridesOf()[4];
|
|
|
|
// bias
|
|
dnnl::memory::desc b_mkl_md;
|
|
if(bias != nullptr)
|
|
b_mkl_md = dnnl::memory::desc({oC}, zType, dnnl::memory::format_tag::x);
|
|
|
|
// output
|
|
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, zType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, zType, xFormat);
|
|
z_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
z_user_md.data.format_desc.blocking.strides[0] = output->stridesOf()[0];
|
|
z_user_md.data.format_desc.blocking.strides[1] = output->stridesOf()[1];
|
|
z_user_md.data.format_desc.blocking.strides[2] = output->stridesOf()[2];
|
|
z_user_md.data.format_desc.blocking.strides[3] = output->stridesOf()[3];
|
|
z_user_md.data.format_desc.blocking.strides[4] = output->stridesOf()[4];
|
|
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
|
|
// operation primitive description
|
|
dnnl::deconvolution_forward::desc op_desc(dnnl::prop_kind::forward_inference, dnnl::algorithm::deconvolution_direct,
|
|
x_mkl_md, w_mkl_md, b_mkl_md, z_mkl_md, strides, dilation, padding, padding_r);
|
|
dnnl::deconvolution_forward::primitive_desc op_prim_desc(op_desc, engine);
|
|
|
|
// arguments (memory buffers) necessary for calculations
|
|
std::unordered_map<int, dnnl::memory> args;
|
|
|
|
dnnl::stream stream(engine);
|
|
|
|
// provide memory buffers and check whether reorder is required
|
|
|
|
// input
|
|
auto x_user_mem = dnnl::memory(x_user_md, engine, input->getBuffer());
|
|
const bool xReorder = op_prim_desc.src_desc() != x_user_mem.get_desc();
|
|
auto x_mkl_mem = xReorder ? dnnl::memory(op_prim_desc.src_desc(), engine) : x_user_mem;
|
|
if (xReorder)
|
|
dnnl::reorder(x_user_mem, x_mkl_mem).execute(stream, x_user_mem, x_mkl_mem);
|
|
args[DNNL_ARG_SRC] = x_mkl_mem;
|
|
|
|
// weights
|
|
auto w_user_mem = dnnl::memory(w_user_md, engine, weights->getBuffer());
|
|
const bool wReorder = op_prim_desc.weights_desc() != w_user_mem.get_desc();
|
|
auto w_mkl_mem = wReorder ? dnnl::memory(op_prim_desc.weights_desc(), engine) : w_user_mem;
|
|
if (wReorder)
|
|
dnnl::reorder(w_user_mem, w_mkl_mem).execute(stream, w_user_mem, w_mkl_mem);
|
|
args[DNNL_ARG_WEIGHTS] = w_mkl_mem;
|
|
|
|
// bias
|
|
if(bias != nullptr) {
|
|
auto b_mkl_mem = dnnl::memory(b_mkl_md, engine, bias->getBuffer());
|
|
args[DNNL_ARG_BIAS] = b_mkl_mem;
|
|
}
|
|
|
|
// output
|
|
auto z_user_mem = dnnl::memory(z_user_md, engine, output->getBuffer());
|
|
const bool zReorder = op_prim_desc.dst_desc() != z_user_mem.get_desc();
|
|
auto z_mkl_mem = zReorder ? dnnl::memory(op_prim_desc.dst_desc(), engine) : z_user_mem;
|
|
args[DNNL_ARG_DST] = z_mkl_mem;
|
|
|
|
// run calculations
|
|
dnnl::deconvolution_forward(op_prim_desc).execute(stream, args);
|
|
|
|
// reorder outputs if necessary
|
|
if (zReorder)
|
|
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem);
|
|
|
|
stream.wait();
|
|
|
|
// shape::printArray(z_mkl_mem.map_data<float>(),8);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void deconv3dBackPropMKLDNN(const NDArray* input, const NDArray* weights, const NDArray* gradO, NDArray* gradI, NDArray* gradW, NDArray* gradB,
|
|
const int kD, const int kH, const int kW, const int sD, const int sH, const int sW, const int pD, const int pH, const int pW, const int dD, const int dH, const int dW,
|
|
const int isSameMode) {
|
|
|
|
// input and gradI [bS, iD, iH, iW, iC], mkl doesn't support ndhwc format
|
|
// weights and gradW [oC, iC, kD, kH, kW] always, mkl doesn't support weights format [kD, kH, kW, oC, iC]
|
|
// gradB [oC], may be nullptr
|
|
// gradO [bS, oD, oH, oW, oC]
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
|
|
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv3d(true, *input, *gradO, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWoC, indWiC, indWkD);
|
|
|
|
dnnl::memory::dims strides = { sD, sH, sW };
|
|
dnnl::memory::dims padding = { pD, pH, pW };
|
|
dnnl::memory::dims padding_r = { (iD - 1) * sD - oD + kD - pD, (iH - 1) * sH - oH + kH - pH, (iW - 1) * sW - oW + kW - pW };
|
|
dnnl::memory::dims dilation = { dD-1, dH-1, dW-1 };
|
|
|
|
// input type
|
|
dnnl::memory::data_type xType = input->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16;
|
|
// weights type
|
|
dnnl::memory::data_type wType = weights->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16;
|
|
// gradO type
|
|
dnnl::memory::data_type gradOType = gradO->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16;
|
|
// gradI type
|
|
dnnl::memory::data_type gradIType = gradI->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16;
|
|
// gradW type
|
|
dnnl::memory::data_type gradWType = gradW->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16;
|
|
// gradB type
|
|
dnnl::memory::data_type gradBType = gradB != nullptr ? (gradB->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16) : dnnl::memory::data_type::f32;
|
|
|
|
dnnl::memory::format_tag xFormat = dnnl::memory::format_tag::ncdhw; // isNCDHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc;
|
|
dnnl::memory::format_tag wFormat = dnnl::memory::format_tag::oidhw;
|
|
|
|
dnnl::memory::dims xDims = {bS, iC, iD, iH, iW};
|
|
dnnl::memory::dims wDims = {oC, iC, kD, kH, kW};
|
|
dnnl::memory::dims zDims = {bS, oC, oD, oH, oW};
|
|
|
|
// memory descriptors for arrays
|
|
|
|
// input
|
|
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xFormat);
|
|
x_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
x_user_md.data.format_desc.blocking.strides[0] = input->stridesOf()[0];
|
|
x_user_md.data.format_desc.blocking.strides[1] = input->stridesOf()[1];
|
|
x_user_md.data.format_desc.blocking.strides[2] = input->stridesOf()[2];
|
|
x_user_md.data.format_desc.blocking.strides[3] = input->stridesOf()[3];
|
|
x_user_md.data.format_desc.blocking.strides[4] = input->stridesOf()[4];
|
|
|
|
// weights
|
|
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormat);
|
|
w_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
w_user_md.data.format_desc.blocking.strides[0] = weights->stridesOf()[0];
|
|
w_user_md.data.format_desc.blocking.strides[1] = weights->stridesOf()[1];
|
|
w_user_md.data.format_desc.blocking.strides[2] = weights->stridesOf()[2];
|
|
w_user_md.data.format_desc.blocking.strides[3] = weights->stridesOf()[3];
|
|
w_user_md.data.format_desc.blocking.strides[4] = weights->stridesOf()[4];
|
|
|
|
// gradO
|
|
dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, gradOType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, gradOType, xFormat);
|
|
gradO_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
gradO_user_md.data.format_desc.blocking.strides[0] = gradO->stridesOf()[0];
|
|
gradO_user_md.data.format_desc.blocking.strides[1] = gradO->stridesOf()[1];
|
|
gradO_user_md.data.format_desc.blocking.strides[2] = gradO->stridesOf()[2];
|
|
gradO_user_md.data.format_desc.blocking.strides[3] = gradO->stridesOf()[3];
|
|
gradO_user_md.data.format_desc.blocking.strides[4] = gradO->stridesOf()[4];
|
|
|
|
// gradI
|
|
dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, gradIType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, gradIType, xFormat);
|
|
gradI_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
gradI_user_md.data.format_desc.blocking.strides[0] = gradI->stridesOf()[0];
|
|
gradI_user_md.data.format_desc.blocking.strides[1] = gradI->stridesOf()[1];
|
|
gradI_user_md.data.format_desc.blocking.strides[2] = gradI->stridesOf()[2];
|
|
gradI_user_md.data.format_desc.blocking.strides[3] = gradI->stridesOf()[3];
|
|
gradI_user_md.data.format_desc.blocking.strides[4] = gradI->stridesOf()[4];
|
|
|
|
// gradW
|
|
dnnl::memory::desc gradW_mkl_md = dnnl::memory::desc(wDims, gradWType, wFormat);
|
|
dnnl::memory::desc gradW_user_md = dnnl::memory::desc(wDims, gradWType, wFormat);
|
|
gradW_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
gradW_user_md.data.format_desc.blocking.strides[0] = gradW->stridesOf()[0];
|
|
gradW_user_md.data.format_desc.blocking.strides[1] = gradW->stridesOf()[1];
|
|
gradW_user_md.data.format_desc.blocking.strides[2] = gradW->stridesOf()[2];
|
|
gradW_user_md.data.format_desc.blocking.strides[3] = gradW->stridesOf()[3];
|
|
gradW_user_md.data.format_desc.blocking.strides[4] = gradW->stridesOf()[4];
|
|
|
|
// gradB
|
|
dnnl::memory::desc gradB_mkl_md;
|
|
if(gradB != nullptr)
|
|
gradB_mkl_md = dnnl::memory::desc({oC}, gradBType, dnnl::memory::format_tag::x);
|
|
|
|
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
|
|
// forward primitive description
|
|
dnnl::deconvolution_forward::desc op_ff_desc(dnnl::prop_kind::forward_inference, dnnl::algorithm::deconvolution_direct, x_mkl_md, w_mkl_md, gradB_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r);
|
|
dnnl::deconvolution_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine);
|
|
|
|
// backward data primitive description
|
|
dnnl::deconvolution_backward_data::desc op_data_bp_desc(dnnl::algorithm::deconvolution_direct, gradI_mkl_md, w_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r);
|
|
dnnl::deconvolution_backward_data::primitive_desc op_data_bp_prim_desc(op_data_bp_desc, engine, op_ff_prim_desc);
|
|
|
|
// backward weights primitive description
|
|
dnnl::deconvolution_backward_weights::desc op_weights_bp_desc(dnnl::algorithm::deconvolution_direct, x_mkl_md, gradW_mkl_md, gradB_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r);
|
|
dnnl::deconvolution_backward_weights::primitive_desc op_weights_bp_prim_desc(op_weights_bp_desc, engine, op_ff_prim_desc);
|
|
|
|
// arguments (memory buffers) necessary for calculations
|
|
std::unordered_map<int, dnnl::memory> args;
|
|
|
|
dnnl::stream stream(engine);
|
|
|
|
// provide memory buffers and check whether reorder is required
|
|
|
|
// input
|
|
auto x_user_mem = dnnl::memory(x_user_md, engine, input->getBuffer());
|
|
const bool xReorder = op_weights_bp_prim_desc.src_desc() != x_user_mem.get_desc();
|
|
auto x_mkl_mem = xReorder ? dnnl::memory(op_weights_bp_prim_desc.src_desc(), engine) : x_user_mem;
|
|
if (xReorder)
|
|
dnnl::reorder(x_user_mem, x_mkl_mem).execute(stream, x_user_mem, x_mkl_mem);
|
|
args[DNNL_ARG_SRC] = x_mkl_mem;
|
|
|
|
// weights
|
|
auto w_user_mem = dnnl::memory(w_user_md, engine, weights->getBuffer());
|
|
const bool wReorder = op_data_bp_prim_desc.weights_desc() != w_user_mem.get_desc();
|
|
auto w_mkl_mem = wReorder ? dnnl::memory(op_data_bp_prim_desc.weights_desc(), engine) : w_user_mem;
|
|
if (wReorder)
|
|
dnnl::reorder(w_user_mem, w_mkl_mem).execute(stream, w_user_mem, w_mkl_mem);
|
|
args[DNNL_ARG_WEIGHTS] = w_mkl_mem;
|
|
|
|
// gradO
|
|
auto gradO_user_mem = dnnl::memory(gradO_user_md, engine, gradO->getBuffer());
|
|
const bool gradOReorder = op_data_bp_prim_desc.diff_dst_desc() != gradO_user_mem.get_desc();
|
|
auto gradO_mkl_mem = gradOReorder ? dnnl::memory(op_data_bp_prim_desc.diff_dst_desc(), engine) : gradO_user_mem;
|
|
if (gradOReorder)
|
|
dnnl::reorder(gradO_user_mem, gradO_mkl_mem).execute(stream, gradO_user_mem, gradO_mkl_mem);
|
|
args[DNNL_ARG_DIFF_DST] = gradO_mkl_mem;
|
|
|
|
// gradI
|
|
auto gradI_user_mem = dnnl::memory(gradI_user_md, engine, gradI->getBuffer());
|
|
const bool gradIReorder = op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc();
|
|
auto gradI_mkl_mem = gradIReorder ? dnnl::memory(op_data_bp_prim_desc.diff_src_desc(), engine) : gradI_user_mem;
|
|
args[DNNL_ARG_DIFF_SRC] = gradI_mkl_mem;
|
|
|
|
// gradW
|
|
auto gradW_user_mem = dnnl::memory(gradW_user_md, engine, gradW->getBuffer());
|
|
const bool gradWReorder = op_weights_bp_prim_desc.diff_weights_desc() != gradW_user_mem.get_desc();
|
|
auto gradW_mkl_mem = gradWReorder ? dnnl::memory(op_weights_bp_prim_desc.diff_weights_desc(), engine) : gradW_user_mem;
|
|
args[DNNL_ARG_DIFF_WEIGHTS] = gradW_mkl_mem;
|
|
|
|
// gradB
|
|
if(gradB != nullptr) {
|
|
auto gradB_mkl_mem = dnnl::memory(gradB_mkl_md, engine, gradB->getBuffer());
|
|
args[DNNL_ARG_DIFF_BIAS] = gradB_mkl_mem;
|
|
}
|
|
|
|
// run backward data calculations
|
|
dnnl::deconvolution_backward_data(op_data_bp_prim_desc).execute(stream, args);
|
|
|
|
// run backward weights calculations
|
|
dnnl::deconvolution_backward_weights(op_weights_bp_prim_desc).execute(stream, args);
|
|
|
|
// reorder gradI if necessary
|
|
if (gradIReorder)
|
|
dnnl::reorder(gradI_mkl_mem, gradI_user_mem).execute(stream, gradI_mkl_mem, gradI_user_mem);
|
|
if (gradWReorder)
|
|
dnnl::reorder(gradW_mkl_mem, gradW_user_mem).execute(stream, gradW_mkl_mem, gradW_user_mem);
|
|
|
|
stream.wait();
|
|
|
|
// shape::printArray(z_mkl_mem.map_data<float>(),8);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(deconv3d) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, oC, iC] always
|
|
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC]
|
|
|
|
auto output = OUTPUT_VARIABLE(0); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW)
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 5, 0, "CUSTOM DECONV3D_MKLDNN OP: rank of input array must be equal to 5, but got %i instead !", input->rankOf());
|
|
REQUIRE_TRUE(weights->rankOf() == 5, 0, "CUSTOM DECONV3D_MKLDNN OP: rank of weights array must be equal to 5, but got %i instead !", weights->rankOf());
|
|
|
|
int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0)); // filter(kernel) depth
|
|
int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1)); // filter(kernel) height
|
|
int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast<int>(weights->sizeAt(2)); // filter(kernel) width
|
|
int sD = INT_ARG(3); // strides depth
|
|
int sH = INT_ARG(4); // strides height
|
|
int sW = INT_ARG(5); // strides width
|
|
int pD = INT_ARG(6); // paddings depth
|
|
int pH = INT_ARG(7); // paddings height
|
|
int pW = INT_ARG(8); // paddings width
|
|
int dD = INT_ARG(9); // dilations depth
|
|
int dH = INT_ARG(10); // dilations height
|
|
int dW = INT_ARG(11); // dilations width
|
|
int isSameMode = INT_ARG(12); // 0-SAME, 1-VALID
|
|
int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
|
|
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWoC, indWiC, indWkD);
|
|
|
|
std::vector<Nd4jLong> expectedWeightsShape = {kD, kH, kW, oC, iC};
|
|
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM DECONV3D_MKLDNN OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
|
|
if (bias)
|
|
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM DECONV3D_MKLDNN OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
|
|
|
|
if(isSameMode){ // SAME
|
|
//Note: we're intentionally swapping iH and oH, to calculated the padding for a"normal" conv (not deconv) forward pass
|
|
ConvolutionUtils::calcPadding3D(pD, pH, pW, iD, iH, iW, oD, oH, oW, kD, kH, kW, sD, sH, sW, dD, dH, dW);
|
|
}
|
|
|
|
// mkl supports only [oC, iC, kD, kH, kW] format for weights
|
|
weights = new NDArray(weights->permute({3,4,0,1,2})); // [kD, kH, kW, oC, iC] -> [oC, iC, kD, kH, kW]
|
|
|
|
// mkl supports only NCDHW
|
|
if(!isNCDHW) {
|
|
input = new NDArray(input->permute({0,4,1,2,3})); // [bS, iD, iH, iW, iC] -> [bS, iC, iD, iH, iW]
|
|
output = new NDArray(output->permute({0,4,1,2,3})); // [bS, oD, oH, oW, oC] -> [bS, oC, oD, oH, oW]
|
|
}
|
|
|
|
deconv3dMKLDNN(input, weights, bias, output, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, isSameMode);
|
|
|
|
delete weights;
|
|
|
|
if(!isNCDHW) {
|
|
delete input;
|
|
delete output;
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
PLATFORM_CHECK(deconv3d) {
|
|
// we don't want to use mkldnn if cpu doesn't support avx/avx2
|
|
// if (::optimalLevel() < 2)
|
|
// return false;
|
|
|
|
auto input = INPUT_VARIABLE(0);
|
|
auto weights = INPUT_VARIABLE(1);
|
|
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr;
|
|
|
|
auto output = INPUT_VARIABLE(0);
|
|
|
|
int dD = INT_ARG(9); // dilations depth
|
|
int dH = INT_ARG(10); // dilations height
|
|
int dW = INT_ARG(11); // dilations width
|
|
int isSameMode = INT_ARG(12); // 0-SAME, 1-VALID
|
|
|
|
const DataType xType = input->dataType();
|
|
const DataType wType = weights->dataType();
|
|
const DataType zType = output->dataType();
|
|
const DataType bType = bias != nullptr ? bias->dataType() : zType;
|
|
|
|
return block.isUseMKLDNN() && (dD <= 1 && dH <= 1 && dW <= 1 && !isSameMode) &&
|
|
(
|
|
(xType==DataType::FLOAT32 && wType==DataType::FLOAT32 && bType==DataType::FLOAT32 && zType==DataType::FLOAT32) ||
|
|
((xType==DataType::UINT8 || xType==DataType::INT8) && wType==DataType::INT8 && (zType==DataType::UINT8 || zType==DataType::INT8 || zType==DataType::INT32 || zType==DataType::FLOAT32) && bType == zType)
|
|
);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(deconv3d_bp) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, oC, iC] always
|
|
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC]
|
|
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next
|
|
|
|
auto gradI = OUTPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW), gradI
|
|
auto gradW = OUTPUT_VARIABLE(1); // [kD, kH, kW, oC, iC] always
|
|
auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC]
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 5, 0, "CUSTOM DECONV3D_MKLDNN_BP OP: rank of input array must be equal to 5, but got %i instead !", input->rankOf());
|
|
REQUIRE_TRUE(weights->rankOf() == 5, 0, "CUSTOM DECONV3D_MKLDNN_BP OP: rank of weights array must be equal to 5 , but got %i instead !", weights->rankOf());
|
|
REQUIRE_TRUE(gradO->rankOf() == 5, 0, "CUSTOM DECONV3D_MKLDNN_BP OP: rank of output gradients (next epsilon) array must be equal to 5, but got %i instead !", gradO->rankOf());
|
|
|
|
|
|
int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0));// filter(kernel) depth
|
|
int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1));// filter(kernel) height
|
|
int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast<int>(weights->sizeAt(2));// filter(kernel) width
|
|
int sD = INT_ARG(3); // strides depth
|
|
int sH = INT_ARG(4); // strides height
|
|
int sW = INT_ARG(5); // strides width
|
|
int pD = INT_ARG(6); // paddings depth
|
|
int pH = INT_ARG(7); // paddings height
|
|
int pW = INT_ARG(8); // paddings width
|
|
int dD = INT_ARG(9); // dilations depth
|
|
int dH = INT_ARG(10); // dilations height
|
|
int dW = INT_ARG(11); // dilations width
|
|
int isSameMode = INT_ARG(12); // 0-SAME, 1-VALID
|
|
int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
|
|
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, *input, *gradO, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWoC, indWiC, indWkD);
|
|
|
|
int trueoD, trueoH, trueoW; // true output height, width
|
|
ConvolutionUtils::calcOutSizeDeconv3D(trueoD, trueoH, trueoW, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, iD, iH, iW, isSameMode);
|
|
|
|
std::vector<Nd4jLong> expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoD,trueoH,trueoW, 0,indIOioC,indIOioD,indIOioD+1,indIOioD+2});
|
|
std::vector<Nd4jLong> expectedWeightsShape = {kD, kH, kW, oC, iC};
|
|
REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "CUSTOM DECONV3D_MKLDNN_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str());
|
|
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM DECONV3D_MKLDNN_BP OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
|
|
if(bias)
|
|
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM DECONV3D_MKLDNN_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
|
|
|
|
if(isSameMode) // Note: we're intentionally swapping iH and oH, to calculated the padding for a"normal" conv (not deconv) forward pass
|
|
ConvolutionUtils::calcPadding3D(pD, pH, pW, iD, iH, iW, oD, oH, oW, kD, kH, kW, sD, sH, sW, dD, dH, dW);
|
|
|
|
// mkl supports only [oC, iC, kD, kH, kW] for weights
|
|
weights = new NDArray(weights->permute({3,4,0,1,2})); // [kD, kH, kW, oC, iC] -> [oC, iC, kD, kH, kW]
|
|
gradW = new NDArray(gradW->permute({3,4,0,1,2})); // [kD, kH, kW, oC, iC] -> [oC, iC, kD, kH, kW]
|
|
|
|
// mkl supports NCDHW format only
|
|
if(!isNCDHW) {
|
|
input = new NDArray(input->permute({0,4,1,2,3})); // [bS, iD, iH, iW, iC] -> [bS, iC, iD, iH, iW]
|
|
gradI = new NDArray(gradI->permute({0,4,1,2,3})); // [bS, iD, iH, iW, iC] -> [bS, iC, iD, iH, iW]
|
|
gradO = new NDArray(gradO->permute({0,4,1,2,3})); // [bS, oD, oH, oW, oC] -> [bS, oC, oD, oH, oW]
|
|
}
|
|
|
|
deconv3dBackPropMKLDNN(input, weights, gradO, gradI, gradW, gradB, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, isSameMode);
|
|
|
|
delete weights;
|
|
delete gradW;
|
|
|
|
if(!isNCDHW) {
|
|
delete input;
|
|
delete gradI;
|
|
delete gradO;
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
|
|
PLATFORM_CHECK(deconv3d_bp) {
|
|
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NHWC) or [bS, iD, iC, iH, iW] (NCDHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, oC, iC] always
|
|
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC]
|
|
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oD, oH, oW, oC] (NHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next
|
|
|
|
auto gradI = OUTPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NHWC) or [bS, iC, iD, iH, iW] (NCDHW), gradI
|
|
auto gradW = OUTPUT_VARIABLE(1); // [kD, kH, kW, oC, iC] always
|
|
auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC]
|
|
|
|
int dD = INT_ARG(9); // dilations depth
|
|
int dH = INT_ARG(10); // dilations height
|
|
int dW = INT_ARG(11); // dilations width
|
|
int isSameMode = INT_ARG(12); // 0-SAME, 1-VALID
|
|
|
|
const DataType xType = input->dataType();
|
|
const DataType wType = weights->dataType();
|
|
const DataType gradOType = gradO->dataType();
|
|
|
|
const DataType gradIType = gradI->dataType();
|
|
const DataType gradWType = gradW->dataType();
|
|
const DataType gradBType = gradB != nullptr ? gradB->dataType() : DataType::FLOAT32;
|
|
|
|
return block.isUseMKLDNN() && (dD <= 1 && dH <= 1 && dW <= 1 && !isSameMode) && ((xType==DataType::FLOAT32 || xType==DataType::BFLOAT16) && (wType==DataType::FLOAT32 || wType==DataType::BFLOAT16) && (gradOType==DataType::FLOAT32 || gradOType==DataType::BFLOAT16) && (gradIType==DataType::FLOAT32 || gradIType==DataType::BFLOAT16) && (gradWType==DataType::FLOAT32 || gradWType==DataType::BFLOAT16) && (gradBType==DataType::FLOAT32 || gradBType==DataType::BFLOAT16) );
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|