cavis/deeplearning4j
raver119 29e8e09db6
String changes (#3)
* initial commit

* additional data types & tensor type

Signed-off-by: raver119 <raver119@gmail.com>

* next step

Signed-off-by: raver119 <raver119@gmail.com>

* missing include

* sparse_to_dense

Signed-off-by: raver119 <raver119@gmail.com>

* few more tests files

Signed-off-by: raver119 <raver119@gmail.com>

* draft

Signed-off-by: raver119 <raver119@gmail.com>

* numeric sparse_to_dense

Signed-off-by: raver119 <raver119@gmail.com>

* comment

Signed-off-by: raver119 <raver119@gmail.com>

* string sparse_to_dense version

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA DataBuffer expand

Signed-off-by: raver119 <raver119@gmail.com>

* few tweaks for CUDA build

Signed-off-by: raver119 <raver119@gmail.com>

* shape fn for string_split

Signed-off-by: raver119 <raver119@gmail.com>

* one more comment

Signed-off-by: raver119 <raver119@gmail.com>

* string_split indices

Signed-off-by: raver119 <raver119@gmail.com>

* next step

Signed-off-by: raver119 <raver119@gmail.com>

* test passes

Signed-off-by: raver119 <raver119@gmail.com>

* few rearrangements for databuffer implementations

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer: move inline methods to common implementations

Signed-off-by: raver119 <raver119@gmail.com>

* add native DataBuffer to Nd4j presets

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer creation

Signed-off-by: raver119 <raver119@gmail.com>

* use DataBuffer for allocation

Signed-off-by: raver119 <raver119@gmail.com>

* cpu databuffer as deallocatable

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer setters for bufers

Signed-off-by: raver119 <raver119@gmail.com>

* couple of wrappers

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffers being passed around

Signed-off-by: raver119 <raver119@gmail.com>

* Bunch of ByteBuffer-related signatures gone

Signed-off-by: raver119 <raver119@gmail.com>

* - few more Nd4j signatures removed
- minor fix for bfloat16

Signed-off-by: raver119 <raver119@gmail.com>

* nullptr pointer is still a pointer, but 0 as address :)

Signed-off-by: raver119 <raver119@gmail.com>

* one special test

Signed-off-by: raver119 <raver119@gmail.com>

* empty string array init

Signed-off-by: raver119 <raver119@gmail.com>

* one more test in cpp

Signed-off-by: raver119 <raver119@gmail.com>

* memcpy instead of databuffer swap

Signed-off-by: raver119 <raver119@gmail.com>

* special InteropDataBuffer for front-end languages

Signed-off-by: raver119 <raver119@gmail.com>

* few tweaks for java

Signed-off-by: raver119 <raver119@gmail.com>

* pointer/indexer actualization

Signed-off-by: raver119 <raver119@gmail.com>

* CustomOp returns list for inputArumgents and outputArguments instead of array

Signed-off-by: raver119 <raver119@gmail.com>

* redundant call

Signed-off-by: raver119 <raver119@gmail.com>

* print_variable op

Signed-off-by: raver119 <raver119@gmail.com>

* - view handling (but wrong one)
- print_variable java wrapper

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* - empty arrays handling

Signed-off-by: raver119 <raver119@gmail.com>

* - deserialization works now

Signed-off-by: raver119 <raver119@gmail.com>

* minor fix

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* one more fix

Signed-off-by: raver119 <raver119@gmail.com>

* initial cuda commit

Signed-off-by: raver119 <raver119@gmail.com>

* print_variable message validation

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA views

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA special buffer size

Signed-off-by: raver119 <raver119@gmail.com>

* minor update to match master changes

Signed-off-by: raver119 <raver119@gmail.com>

* - consider arrays always actual on device for CUDA
- additional PrintVariable constructor
- CudaUtf8Buffer now allocates host buffer by default

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* - print_variable now allows print from device

Signed-off-by: raver119 <raver119@gmail.com>

* InteropDataBuffer data type fix

Signed-off-by: raver119 <raver119@gmail.com>

* ...

Signed-off-by: raver119 <raver119@gmail.com>

* disable some debug messages

Signed-off-by: raver119 <raver119@gmail.com>

* master pulled in

Signed-off-by: raver119 <raver119@gmail.com>

* couple of new methods for DataBuffer interop

Signed-off-by: raver119 <raver119@gmail.com>

* java side

Signed-off-by: raver119 <raver119@gmail.com>

* offsetted constructor

Signed-off-by: raver119 <raver119@gmail.com>

* new CUDA deallocator

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA backend torn apart

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA backend torn apart 2

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA backend torn apart 3

Signed-off-by: raver119 <raver119@gmail.com>

* - few new tests
- few new methods for DataBuffer management

Signed-off-by: raver119 <raver119@gmail.com>

* few more tests + few more tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* two failing tests

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* two failing tests pass

Signed-off-by: raver119 <raver119@gmail.com>

* now we pass DataBuffer to legacy ops too

Signed-off-by: raver119 <raver119@gmail.com>

* Native DataBuffer for legacy ops, Java side

Signed-off-by: raver119 <raver119@gmail.com>

* CPU java side update

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA java side update

Signed-off-by: raver119 <raver119@gmail.com>

* no more prepare/register action on java side

Signed-off-by: raver119 <raver119@gmail.com>

* NDArray::prepare/register use now accepts vectors

Signed-off-by: raver119 <raver119@gmail.com>

* InteropDataBuffer now has few more convenience methods

Signed-off-by: raver119 <raver119@gmail.com>

* java bindings update

Signed-off-by: raver119 <raver119@gmail.com>

* tick device in NativeOps

Signed-off-by: raver119 <raver119@gmail.com>

* Corrected usage of OpaqueBuffer for tests.

* Corrected usage of OpaqueBuffer for java tests.

* NativeOpsTests fixes.

* print_variable now returns scalar

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* compat_string_split fix for CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* - CUDA execScalar fix
- CUDA lazyAllocateHostPointer now checks java indexer/pointer instead of native pointer

Signed-off-by: raver119 <raver119@gmail.com>

* legacy ops DataBuffer migration prototype

Signed-off-by: raver119 <raver119@gmail.com>

* ignore device shapeinfo coming from java

Signed-off-by: raver119 <raver119@gmail.com>

* minor fix

Signed-off-by: raver119 <raver119@gmail.com>

* minor transformAny fix

Signed-off-by: raver119 <raver119@gmail.com>

* minor tweak for lazy host allocation

Signed-off-by: raver119 <raver119@gmail.com>

* - DataBuffer::memcpy method
- bitcast now uses memcpy

Signed-off-by: raver119 <raver119@gmail.com>

* - IndexReduce CUDA dimension buffer fix

Signed-off-by: raver119 <raver119@gmail.com>

* views for CPU and CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* less spam

Signed-off-by: raver119 <raver119@gmail.com>

* optional memory init

Signed-off-by: raver119 <raver119@gmail.com>

* async memset

Signed-off-by: raver119 <raver119@gmail.com>

* - SummaryStats CUDA fix
- DataBuffer.sameUnderlyingData() impl
- execBroadcast fix

Signed-off-by: raver119 <raver119@gmail.com>

* - reduce3All fix
switch to CUDA 10 temporarily

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA version

Signed-off-by: raver119 <raver119@gmail.com>

* proper memory deallocator registration

Signed-off-by: raver119 <raver119@gmail.com>

* HOST_ONLY workspace allocation

Signed-off-by: raver119 <raver119@gmail.com>

* temp commit

Signed-off-by: raver119 <raver119@gmail.com>

* few conflicts resolved

Signed-off-by: raver119 <raver119@gmail.com>

* few minor fixes

Signed-off-by: raver119 <raver119@gmail.com>

* one more minor fix

Signed-off-by: raver119 <raver119@gmail.com>

* NDArray permute should operate on JVM primitives

Signed-off-by: raver119 <raver119@gmail.com>

* - create InteropDataBuffer for shapes as well
- update pointers after view creation in Java

Signed-off-by: raver119 <raver119@gmail.com>

* - addressPointer temporary moved to C++

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA: don't account offset twice

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA: DataBuffer pointer constructor updated

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA NDArray.unsafeDuplication() simplified

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA minor workspace-related fixes

Signed-off-by: raver119 <raver119@gmail.com>

* CPU DataBuffer.reallocate()

Signed-off-by: raver119 <raver119@gmail.com>

* print_affinity op

Signed-off-by: raver119 <raver119@gmail.com>

* print_affinity java side

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA more tweaks for data locality

Signed-off-by: raver119 <raver119@gmail.com>

* - compat_string_split tweak
- CudaUtf8Buffer update

Signed-off-by: raver119 <raver119@gmail.com>

* INDArray.close() mechanic restored

Signed-off-by: raver119 <raver119@gmail.com>

* one more test fixed

Signed-off-by: raver119 <raver119@gmail.com>

* - CUDA DataBuffer.reallocate() updated
- cudaMemcpy (synchronous) restored

Signed-off-by: raver119 <raver119@gmail.com>

* one last fix

Signed-off-by: raver119 <raver119@gmail.com>

* bad import removed

Signed-off-by: raver119 <raver119@gmail.com>

* another small fix

Signed-off-by: raver119 <raver119@gmail.com>

* one special test

Signed-off-by: raver119 <raver119@gmail.com>

* fix bad databuffer size

Signed-off-by: raver119 <raver119@gmail.com>

* release primaryBuffer on replace

Signed-off-by: raver119 <raver119@gmail.com>

* higher timeout

Signed-off-by: raver119 <raver119@gmail.com>

* disable timeouts

Signed-off-by: raver119 <raver119@gmail.com>

* dbCreateView now validates offset and length of a view

Signed-off-by: raver119 <raver119@gmail.com>

* additional validation for dbExpand

Signed-off-by: raver119 <raver119@gmail.com>

* restore timeout back again

Signed-off-by: raver119 <raver119@gmail.com>

* smaller distribution for rng test to prevent timeouts

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA DataBuffer::memcpy now copies to device all the time

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueDataBuffer now contains all required methods for interop

Signed-off-by: raver119 <raver119@gmail.com>

* some javadoc

Signed-off-by: raver119 <raver119@gmail.com>

* GC on failed allocations

Signed-off-by: raver119 <raver119@gmail.com>

* minoe memcpu tweak

Signed-off-by: raver119 <raver119@gmail.com>

* one more bitcast test

Signed-off-by: raver119 <raver119@gmail.com>

* - NDArray::deviceId() propagation
- special multi-threaded test for data locality checks

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer additional syncStream

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer additional syncStream

Signed-off-by: raver119 <raver119@gmail.com>

* one ignored test

Signed-off-by: raver119 <raver119@gmail.com>

* skip host alloc for empty arrays

Signed-off-by: raver119 <raver119@gmail.com>

* ByteBuffer support is back

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer::memcpy minor fix

Signed-off-by: raver119 <raver119@gmail.com>

* few minor prelu/bp tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* nullify-related fixes

Signed-off-by: raver119 <raver119@gmail.com>

* PReLU fixes (#157)

Signed-off-by: Alex Black <blacka101@gmail.com>

* Build fixed

* Fix tests

* one more ByteBuffer signature restored

Signed-off-by: raver119 <raver119@gmail.com>

* nd4j-jdbc-hsql profiles fix

Signed-off-by: raver119 <raver119@gmail.com>

* nd4j-jdbc-hsql profiles fix

Signed-off-by: raver119 <raver119@gmail.com>

* PReLU weight init fix

Signed-off-by: Alex Black <blacka101@gmail.com>

* Small PReLU fix

Signed-off-by: Alex Black <blacka101@gmail.com>

* - INDArray.migrate() reactivated
- DataBuffer::setDeviceId(...) added
- InteropDataBuffer Z syncToDevice added for views

Signed-off-by: raver119 <raver119@gmail.com>

* missed file

Signed-off-by: raver119 <raver119@gmail.com>

* Small tweak

Signed-off-by: Alex Black <blacka101@gmail.com>

* cuda 10.2

Signed-off-by: raver119 <raver119@gmail.com>

* minor fix

Signed-off-by: raver119 <raver119@gmail.com>

Co-authored-by: shugeo <sgazeos@gmail.com>
Co-authored-by: Alex Black <blacka101@gmail.com>
Co-authored-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
2020-01-04 13:27:50 +03:00
..
ci Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
contrib Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
deeplearning4j-common Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
deeplearning4j-common-tests Various fixes (#143) 2020-01-04 13:45:07 +11:00
deeplearning4j-core Various fixes (#143) 2020-01-04 13:45:07 +11:00
deeplearning4j-cuda Various fixes (#143) 2020-01-04 13:45:07 +11:00
deeplearning4j-data Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
deeplearning4j-dataimport-solrj Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
deeplearning4j-graph Various fixes (#143) 2020-01-04 13:45:07 +11:00
deeplearning4j-manifold Various fixes (#143) 2020-01-04 13:45:07 +11:00
deeplearning4j-modelexport-solr Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
deeplearning4j-modelimport Various fixes (#143) 2020-01-04 13:45:07 +11:00
deeplearning4j-nearestneighbors-parent Various fixes (#143) 2020-01-04 13:45:07 +11:00
deeplearning4j-nlp-parent Various fixes (#143) 2020-01-04 13:45:07 +11:00
deeplearning4j-nn String changes (#3) 2020-01-04 13:27:50 +03:00
deeplearning4j-remote Various fixes (#143) 2020-01-04 13:45:07 +11:00
deeplearning4j-scaleout String changes (#3) 2020-01-04 13:27:50 +03:00
deeplearning4j-ui-parent Various fixes (#143) 2020-01-04 13:45:07 +11:00
deeplearning4j-util Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
deeplearning4j-zoo Various fixes (#143) 2020-01-04 13:45:07 +11:00
dl4j-integration-tests Various fixes (#143) 2020-01-04 13:45:07 +11:00
dl4j-perf Various fixes (#143) 2020-01-04 13:45:07 +11:00
.codeclimate.yml Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
.travis.yml Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
CONTRIBUTORS.md Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
GITTER_GUIDELINES.md Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
LICENSE.txt Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
README.md Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
buildmultiplescalaversions.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pom.xml Various fixes (#143) 2020-01-04 13:45:07 +11:00

README.md

Eclipse Deeplearning4J: Neural Networks for Java/JVM

Join the chat at https://gitter.im/deeplearning4j/deeplearning4j Maven Central Javadoc

Eclipse Deeplearning4J is part of the Skymind Intelligence Layer, along with ND4J, DataVec, Arbiter and RL4J. It is an Apache 2.0-licensed, open-source, distributed neural net library written in Java and Scala. By contributing code to this repository, you agree to make your contribution available under an Apache 2.0 license.

Deeplearning4J integrates with Hadoop and Spark and runs on several backends that enable use of CPUs and GPUs. The aim is to create a plug-and-play solution that is more convention than configuration, and which allows for fast prototyping.

The most recent stable release in Maven Central is 0.9.1, and the current master on Github can be built from source.

For more info, see: https://docs.skymind.ai/docs


Using Eclipse Deeplearning4j

To get started using Deeplearning4j, please go to our Quickstart. You'll need to be familiar with a Java automated build tool such as Maven and an IDE such as IntelliJ.

Main Features

  • Versatile n-dimensional array class
  • GPU integration (supports devices starting from Kepler, cc3.0. You can check your device's compute compatibility here.)

Modules

  • datavec = Library for converting images, text and CSV data into format suitable for Deep Learning
  • nn = core neural net structures MultiLayer Network and Computation graph for designing Neural Net structures
  • core = additional functionality building on deeplearning4j-nn
  • modelimport = functionality to import models from Keras
  • nlp = natural language processing components including vectorizers, models, sample datasets and renderers
  • scaleout = integrations
    • spark = integration with Apache Spark versions 1.3 to 1.6 (Spark 2.0 coming soon)
    • parallel-wraper = Single machine model parallelism (for multi-GPU systems, etc)
    • aws = loading data to and from aws resources EC2 and S3
  • ui = provides visual interfaces for tuning models. Details here

Documentation

Documentation is available at deeplearning4j.org and JavaDocs. Open-source contributors can help us improve our documentation for Deeplearning4j by sending pull requests for the DL4J website here

Support

We are not supporting Stackoverflow right now. Github issues should focus on bug reports and feature requests. Please join the community on Gitter, where we field questions about how to install the software and work with neural nets. For support from Skymind, please see our contact page.

Installation

To install Deeplearning4J, see our Quickstart and below. More information can be found on the ND4J web site as well as here.

Use Maven Central Repository

Search Maven Central for deeplearning4j to get a list of dependencies.

Add the dependency information to your pom.xml file. We highly recommend downloading via Maven unless you plan to help us develop DL4J. An easy way to get up-to-date dependencies is to use the ones listed in our dl4j-examples POM.


Contribute

  1. Check for open issues or open a fresh one to start a discussion around a feature idea or a bug.
  2. If you feel uncomfortable or uncertain about an issue or your changes, don't hesitate to contact us on Gitter using the link above.
  3. Fork the repository on GitHub to start making your changes (branch off of the master branch).
  4. Write a test that shows the bug was fixed or the feature works as expected.
  5. Note the repository follows the Google Java style with two modifications: 120-char column wrap and 4-spaces indentation. You can format your code to this format by typing mvn formatter:format in the subproject you work on, by using the contrib/formatter.xml at the root of the repository to configure the Eclipse formatter, or by using the Intellij plugin.
  6. Send a pull request and bug us on Gitter until it gets merged and published. :)
  7. Add technical documentation on the Deeplearning4j website and fix any typos you see.