Go to file
shugeo 815a2908af Shugeo solve triangular (#173)
* Added implementation of the triangular_solve op.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed compilation issues.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Added verification of input data and helpers facilities for triangular_solve op.'

Signed-off-by: shugeo <sgazeos@gmail.com>

* Added cpu implementation for triangular_solve helpers.

* Added tests and implementation for upper triangular equations.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Added a pair of cases to tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Added multithreading with cpu helpers for triangular_solve op.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Added cuda implementation of triangular_solve op helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Finished cuda implementation of triangular_solve helpers and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed copyright marks.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected grammar errors with doc and error messages.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored matricies processing with triangular_solve cuda helper implementation.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Added triangular_solve wrapper

* Fixed mapping

* Added processing for adjoint with cpu helpers of triangular_solve op implementation.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Added implementation for adjoint routine with cuda platform.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Added multithreading with adjoint routine for cpu platform.

Signed-off-by: shugeo <sgazeos@gmail.com>

Co-authored-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
2020-01-22 10:48:03 +03:00
.github Update contributing and issue/PR templates (#7934) 2019-06-22 16:21:27 +10:00
arbiter Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
datavec Various fixes (#143) 2020-01-04 13:45:07 +11:00
deeplearning4j String changes (#3) 2020-01-04 13:27:50 +03:00
docs Mention the new % unit for maxBytes and maxPhysicalBytes in Memory management documentation (#8435) (#8461) 2019-12-05 12:47:53 +09:00
gym-java-client RL4J: Make a few fixes (#8303) 2019-10-31 13:41:52 +09:00
jumpy Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
libnd4j Shugeo solve triangular (#173) 2020-01-22 10:48:03 +03:00
nd4j Shugeo solve triangular (#173) 2020-01-22 10:48:03 +03:00
nd4s String changes (#3) 2020-01-04 13:27:50 +03:00
pydatavec Minor edits to README for pydatavec and pydl4j (#8336) 2019-12-06 08:10:38 +01:00
pydl4j Minor edits to README for pydatavec and pydl4j (#8336) 2019-12-06 08:10:38 +01:00
rl4j Merge pull request #8495 from KonduitAI/master 2019-12-05 11:05:44 +11:00
scalnet Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
.gitignore fix pydatavec for python 3... and python2 install problems (#8422) 2019-11-20 08:20:04 +01:00
CONTRIBUTING.md Various fixes (#43) 2019-11-14 19:38:20 +11:00
Jenkinsfile Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
LICENSE Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
README.md Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
change-cuda-versions.sh Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
change-scala-versions.sh Version upgrades (#199) 2019-08-30 14:35:27 +10:00
perform-release.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pom.xml Python updates (#86) 2019-12-02 19:20:23 +11:00

README.md

Monorepo of Deeplearning4j

Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:

To build everything, we can use commands like

./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx

or

mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true

An example of GPU "CC" or compute capability is 61 for Titan X Pascal.

Want some examples?

We have separate repository with various examples available: https://github.com/eclipse/deeplearning4j-examples

In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/eclipse/deeplearning4j-examples/tree/master/tutorials