cavis/libnd4j/include/ops/declarable/generic/transforms/standardize.cpp

144 lines
5.2 KiB
C++

/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
//
// @author Paul Dubs
//
#include <system/op_boilerplate.h>
#if NOT_EXCLUDED(OP_standardize)
#include <ops/declarable/CustomOperations.h>
#include <ops/declarable/helpers/reverse.h>
namespace sd {
namespace ops {
CONFIGURABLE_OP_IMPL(standardize, 1, 1, true, 0, -2) {
auto input = INPUT_VARIABLE(0);
auto output = OUTPUT_VARIABLE(0);
std::vector<int> axis;
if (block.width() > 1)
axis = INPUT_VARIABLE(1)->template asVectorT<int>();
else if (block.numI() > 0)
axis = *block.getIArguments();
REQUIRE_TRUE(!axis.empty(), 0, "STANDARDIZE OP: axis has to be non-empty")
shape::checkDimensions(input->rankOf(), axis);
auto means = input->reduceAlongDimension(reduce::Mean, axis, true);
auto stdev = input->varianceAlongDimension(variance::SummaryStatsStandardDeviation, false, axis);
stdev.reshapei(means.getShapeAsVector());
input->applyTrueBroadcast(sd::BroadcastOpsTuple::Subtract(), means, *output, false);
output->applyTrueBroadcast(sd::BroadcastOpsTuple::Divide(), stdev, *output, false);
output->applyScalar(sd::scalar::ReplaceNans, 0, *output);
return Status::OK();
}
DECLARE_TYPES(standardize) {
getOpDescriptor()->setAllowedInputTypes(0, {ALL_FLOATS});
getOpDescriptor()->setAllowedInputTypes(1, {DataType::INT32, DataType::INT64});
getOpDescriptor()->setAllowedOutputTypes(0, DataType::INHERIT);
}
CUSTOM_OP_IMPL(standardize_bp, 2, 1, false, 0, -2) {
auto input = INPUT_VARIABLE(0);
auto eps = block.width() == 3 ? INPUT_VARIABLE(2) : INPUT_VARIABLE(1);
auto output = OUTPUT_VARIABLE(0);
std::vector<int> axis;
if (block.width() == 3)
axis = INPUT_VARIABLE(1)->template asVectorT<int>();
else if (block.numI() > 0)
axis = *block.getIArguments();
REQUIRE_TRUE(!axis.empty(), 0, "STANDARDIZE OP: axis has to be non-empty")
shape::checkDimensions(input->rankOf(), axis);
auto longAxis = ArrayUtils::toLongVector(axis);
auto means = input->reduceAlongDimension(reduce::Mean, axis, true);
auto stdev = input->varianceAlongDimension(variance::SummaryStatsStandardDeviation, false, axis);
stdev.reshapei(means.getShapeAsVector());
eps->applyTrueBroadcast(sd::BroadcastOpsTuple::Divide(), stdev, *output, false);
NDArray dldu_sum = -output->reduceAlongDimension(reduce::Sum, axis, true);
NDArray dldx_u(input->shapeInfo(), false, block.launchContext());
std::vector<NDArray*> meanBpArgs = {input, &dldu_sum};
std::vector<NDArray*> meanBpOutput = {&dldx_u};
std::vector<double> meanBpTArgs = {};
std::vector<bool> meanBpBArgs = {};
sd::ops::reduce_mean_bp meanBp;
meanBp.execute(meanBpArgs, meanBpOutput, meanBpTArgs, longAxis, meanBpBArgs);
*output += dldx_u;
// (eps * (means - input) / (stdev * stdev))
NDArray tmp(eps->shapeInfo(), false, block.launchContext());
means.applyTrueBroadcast(sd::BroadcastOpsTuple::Subtract(), *input, tmp, false);
tmp.applyPairwiseTransform(sd::pairwise::Multiply, *eps, tmp);
stdev.applyPairwiseTransform(sd::pairwise::Multiply, stdev, stdev);
tmp.applyTrueBroadcast(sd::BroadcastOpsTuple::Divide(), stdev, tmp, false);
auto dlds_sum = tmp.reduceAlongDimension(reduce::Sum, axis, true);
NDArray dldx_s(input->shapeInfo(), false, block.launchContext());
std::vector<NDArray*> stdevBpArgs = {input, &dlds_sum};
std::vector<NDArray*> stdevBpOutput = {&dldx_s};
std::vector<double> stdevBpTArgs = {};
std::vector<bool> stdevBpBArgs = {};
sd::ops::reduce_stdev_bp stdevBp;
stdevBp.execute(stdevBpArgs, stdevBpOutput, stdevBpTArgs, longAxis, stdevBpBArgs);
*output += dldx_s;
output->applyScalar(sd::scalar::ReplaceNans, 0, *output);
return Status::OK();
}
DECLARE_TYPES(standardize_bp) {
getOpDescriptor()
->setAllowedInputTypes(sd::DataType::ANY)
->setAllowedOutputTypes({ALL_FLOATS});
}
DECLARE_SHAPE_FN(standardize_bp) {
auto in = inputShape->at(0);
Nd4jLong *out;
COPY_SHAPE(in, out);
return SHAPELIST(CONSTANT(out));
}
}
}
#endif