/* * ****************************************************************************** * * * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * See the NOTICE file distributed with this work for additional * * information regarding copyright ownership. * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ // // @author Paul Dubs // #include #if NOT_EXCLUDED(OP_standardize) #include #include namespace sd { namespace ops { CONFIGURABLE_OP_IMPL(standardize, 1, 1, true, 0, -2) { auto input = INPUT_VARIABLE(0); auto output = OUTPUT_VARIABLE(0); std::vector axis; if (block.width() > 1) axis = INPUT_VARIABLE(1)->template asVectorT(); else if (block.numI() > 0) axis = *block.getIArguments(); REQUIRE_TRUE(!axis.empty(), 0, "STANDARDIZE OP: axis has to be non-empty") shape::checkDimensions(input->rankOf(), axis); auto means = input->reduceAlongDimension(reduce::Mean, axis, true); auto stdev = input->varianceAlongDimension(variance::SummaryStatsStandardDeviation, false, axis); stdev.reshapei(means.getShapeAsVector()); input->applyTrueBroadcast(sd::BroadcastOpsTuple::Subtract(), means, *output, false); output->applyTrueBroadcast(sd::BroadcastOpsTuple::Divide(), stdev, *output, false); output->applyScalar(sd::scalar::ReplaceNans, 0, *output); return Status::OK(); } DECLARE_TYPES(standardize) { getOpDescriptor()->setAllowedInputTypes(0, {ALL_FLOATS}); getOpDescriptor()->setAllowedInputTypes(1, {DataType::INT32, DataType::INT64}); getOpDescriptor()->setAllowedOutputTypes(0, DataType::INHERIT); } CUSTOM_OP_IMPL(standardize_bp, 2, 1, false, 0, -2) { auto input = INPUT_VARIABLE(0); auto eps = block.width() == 3 ? INPUT_VARIABLE(2) : INPUT_VARIABLE(1); auto output = OUTPUT_VARIABLE(0); std::vector axis; if (block.width() == 3) axis = INPUT_VARIABLE(1)->template asVectorT(); else if (block.numI() > 0) axis = *block.getIArguments(); REQUIRE_TRUE(!axis.empty(), 0, "STANDARDIZE OP: axis has to be non-empty") shape::checkDimensions(input->rankOf(), axis); auto longAxis = ArrayUtils::toLongVector(axis); auto means = input->reduceAlongDimension(reduce::Mean, axis, true); auto stdev = input->varianceAlongDimension(variance::SummaryStatsStandardDeviation, false, axis); stdev.reshapei(means.getShapeAsVector()); eps->applyTrueBroadcast(sd::BroadcastOpsTuple::Divide(), stdev, *output, false); NDArray dldu_sum = -output->reduceAlongDimension(reduce::Sum, axis, true); NDArray dldx_u(input->shapeInfo(), false, block.launchContext()); std::vector meanBpArgs = {input, &dldu_sum}; std::vector meanBpOutput = {&dldx_u}; std::vector meanBpTArgs = {}; std::vector meanBpBArgs = {}; sd::ops::reduce_mean_bp meanBp; meanBp.execute(meanBpArgs, meanBpOutput, meanBpTArgs, longAxis, meanBpBArgs); *output += dldx_u; // (eps * (means - input) / (stdev * stdev)) NDArray tmp(eps->shapeInfo(), false, block.launchContext()); means.applyTrueBroadcast(sd::BroadcastOpsTuple::Subtract(), *input, tmp, false); tmp.applyPairwiseTransform(sd::pairwise::Multiply, *eps, tmp); stdev.applyPairwiseTransform(sd::pairwise::Multiply, stdev, stdev); tmp.applyTrueBroadcast(sd::BroadcastOpsTuple::Divide(), stdev, tmp, false); auto dlds_sum = tmp.reduceAlongDimension(reduce::Sum, axis, true); NDArray dldx_s(input->shapeInfo(), false, block.launchContext()); std::vector stdevBpArgs = {input, &dlds_sum}; std::vector stdevBpOutput = {&dldx_s}; std::vector stdevBpTArgs = {}; std::vector stdevBpBArgs = {}; sd::ops::reduce_stdev_bp stdevBp; stdevBp.execute(stdevBpArgs, stdevBpOutput, stdevBpTArgs, longAxis, stdevBpBArgs); *output += dldx_s; output->applyScalar(sd::scalar::ReplaceNans, 0, *output); return Status::OK(); } DECLARE_TYPES(standardize_bp) { getOpDescriptor() ->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } DECLARE_SHAPE_FN(standardize_bp) { auto in = inputShape->at(0); Nd4jLong *out; COPY_SHAPE(in, out); return SHAPELIST(CONSTANT(out)); } } } #endif