raver119 763a225c6a [WIP] More of CUDA operations (#69)
* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* - gruCell_bp further

Signed-off-by: Yurii <yurii@skymind.io>

* - further work on gruCell_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Inverse matrix cublas implementation. Partial working revision.

* Separation of segment ops helpers. Max separation.

* Separated segment_min ops.

* Separation of segment_mean/sum/prod/sqrtN ops heleprs.

* Fixed diagonal processing with LUP decomposition.

* Modified inversion approach using current state of LU decomposition.

* Implementation of matrix_inverse op with cuda kernels. Working revision.

* Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests.

* - further work on gruCell_bp (ff/cuda)

Signed-off-by: Yurii <yurii@skymind.io>

* comment one test for gruCell_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - provide cuda static_rnn

Signed-off-by: Yurii <yurii@skymind.io>

* Refactored random_shuffle op to use new random generator.

* Refactored random_shuffle op helper.

* Fixed debug tests with random ops tests.

* Implement random_shuffle op cuda kernel helper and tests.

* - provide cuda scatter_update

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of random_shuffle for linear case with cuda kernels and tests.

* Implemented random_shuffle with cuda kernels. Final revision.

* - finally gruCell_bp is completed

Signed-off-by: Yurii <yurii@skymind.io>

* Dropout op cuda helper implementation.

* Implemented dropout_bp cuda helper.

* Implemented alpha_dropout_bp with cuda kernel helpers.

* Refactored helper.

* Implementation of suppresion helper with cuda kernels.

* - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue

Signed-off-by: Yurii <yurii@skymind.io>

* Using sort by value method.

* Implementation of image.non_max_suppression op cuda-based helper.

* - correcting and testing adjust_hue, adjust_saturation cpu/cuda code

Signed-off-by: Yurii <yurii@skymind.io>

* Added cuda device prefixes to declarations.

* Implementation of hashcode op with cuda helper. Initital revision.

* rnn cu impl removed

Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 23:20:41 +10:00

92 lines
3.7 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Created by raver119 on 24.11.17.
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <op_boilerplate.h>
#if NOT_EXCLUDED(OP_scatter_add)
#include <ops/declarable/CustomOperations.h>
#include <ops/declarable/generic/helpers/ScatterHelper.h>
namespace nd4j {
namespace ops {
OP_IMPL(scatter_add, 3, 1, true) {
auto input = INPUT_VARIABLE(0);
auto indices = INPUT_VARIABLE(1);
auto updates = INPUT_VARIABLE(2);
auto output = OUTPUT_VARIABLE(0);
const bool lock = block.getBArguments()->empty() ? false : B_ARG(0);
const int inRank = input->rankOf();
const int indRank = indices->rankOf();
const int updRank = updates->rankOf();
const Nd4jLong indLen = indices->lengthOf();
REQUIRE_TRUE(inRank > 0, 0, "SCATTER_ADD OP: input should not be scalar !");
if(inRank == 1) {
REQUIRE_TRUE(indices->isSameShape(updates), 0, "SCATTER_ADD OP: when input array has rank = 1 then indices and updates must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(indices).c_str(), ShapeUtils::shapeAsString(updates).c_str());
}
else if (inRank == updRank && indices->isVector()) {
std::vector<Nd4jLong> updShape = updates->getShapeAsVector();
std::vector<Nd4jLong> inShape = input->getShapeAsVector();
std::vector<Nd4jLong> expectedUpdShape = {indices->lengthOf()};
expectedUpdShape.insert(expectedUpdShape.end(), inShape.begin()+1, inShape.end());
REQUIRE_TRUE(expectedUpdShape == updShape, 0, "SCATTER_ADD OP: wrong shape of updates array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedUpdShape).c_str(), ShapeUtils::shapeAsString(updShape).c_str());
}
else {
REQUIRE_TRUE(updRank == indRank + inRank - 1, 0, "SCATTER_ADD OP: wrong rank of updates array, expected is %i, but got %i instead !", indRank + inRank - 1 , updRank);
std::vector<Nd4jLong> updShape = updates->getShapeAsVector();
std::vector<Nd4jLong> inShape = input->getShapeAsVector();
std::vector<Nd4jLong> expectedUpdShape = indices->getShapeAsVector();
expectedUpdShape.insert(expectedUpdShape.end(), inShape.begin() + Nd4jLong(1L), inShape.end());
REQUIRE_TRUE(expectedUpdShape == updShape, 0, "SCATTER_ADD OP: wrong shape of updates array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedUpdShape).c_str(), ShapeUtils::shapeAsString(updShape).c_str());
}
if (!block.isInplace())
output->assign(input);
helpers::scatter(block.launchContext(), pairwise::Add, *indices, *updates, *output, lock);
return Status::OK();
}
DECLARE_SYN(ScatterAdd, scatter_add);
DECLARE_TYPES(scatter_add) {
getOpDescriptor()
->setAllowedInputTypes(0, {ALL_INTS, ALL_FLOATS})
->setAllowedInputTypes(1, {ALL_INTS})
->setAllowedInputTypes(2, {ALL_INTS, ALL_FLOATS})
->setAllowedOutputTypes({ALL_INTS, ALL_FLOATS});
}
}
}
#endif