22993f853f
When doing classification we need to know the `numPossibleLabels`. If it's set to -1, then we get obscure and confusing null-pointers when accessing labels when calling `ComputationGraph.fit` on the iterator. This PR blocks the user from shooting themselves in the foot. |
||
---|---|---|
.github | ||
arbiter | ||
datavec | ||
deeplearning4j | ||
docs | ||
gym-java-client | ||
jumpy | ||
libnd4j | ||
nd4j | ||
nd4s | ||
pydatavec | ||
pydl4j | ||
rl4j | ||
scalnet | ||
.gitignore | ||
CONTRIBUTING.md | ||
Jenkinsfile | ||
LICENSE | ||
README.md | ||
change-cuda-versions.sh | ||
change-scala-versions.sh | ||
change-spark-versions.sh | ||
perform-release.sh | ||
pom.xml |
README.md
Monorepo of Deeplearning4j
Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:
- https://github.com/deeplearning4j/libnd4j
- https://github.com/deeplearning4j/nd4j
- https://github.com/deeplearning4j/datavec
- https://github.com/deeplearning4j/arbiter
- https://github.com/deeplearning4j/nd4s
- https://github.com/deeplearning4j/gym-java-client
- https://github.com/deeplearning4j/rl4j
- https://github.com/deeplearning4j/scalnet
- https://github.com/deeplearning4j/pydl4j
- https://github.com/deeplearning4j/jumpy
- https://github.com/deeplearning4j/pydatavec
To build everything, we can use commands like
./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx
or
mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true
An example of GPU "CC" or compute capability is 61 for Titan X Pascal.
Want some examples?
We have separate repository with various examples available: https://github.com/deeplearning4j/dl4j-examples
In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/deeplearning4j/dl4j-examples/tree/master/tutorials