Shugeo solve triangular (#173)
* Added implementation of the triangular_solve op. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed compilation issues. Signed-off-by: shugeo <sgazeos@gmail.com> * Added verification of input data and helpers facilities for triangular_solve op.' Signed-off-by: shugeo <sgazeos@gmail.com> * Added cpu implementation for triangular_solve helpers. * Added tests and implementation for upper triangular equations. Signed-off-by: shugeo <sgazeos@gmail.com> * Added a pair of cases to tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Added multithreading with cpu helpers for triangular_solve op. Signed-off-by: shugeo <sgazeos@gmail.com> * Added cuda implementation of triangular_solve op helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Finished cuda implementation of triangular_solve helpers and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed copyright marks. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected grammar errors with doc and error messages. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored matricies processing with triangular_solve cuda helper implementation. Signed-off-by: shugeo <sgazeos@gmail.com> * Added triangular_solve wrapper * Fixed mapping * Added processing for adjoint with cpu helpers of triangular_solve op implementation. Signed-off-by: shugeo <sgazeos@gmail.com> * Added implementation for adjoint routine with cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Added multithreading with adjoint routine for cpu platform. Signed-off-by: shugeo <sgazeos@gmail.com> Co-authored-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>master
parent
e50b285c2c
commit
815a2908af
|
@ -0,0 +1,82 @@
|
|||
/*******************************************************************************
|
||||
* Copyright (c) 2020 Konduit, K.K.
|
||||
*
|
||||
* This program and the accompanying materials are made available under the
|
||||
* terms of the Apache License, Version 2.0 which is available at
|
||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* License for the specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
******************************************************************************/
|
||||
|
||||
//
|
||||
// Created by GS <sgazeos@gmail.com> at 01/14/2020
|
||||
//
|
||||
|
||||
#include <op_boilerplate.h>
|
||||
#if NOT_EXCLUDED(OP_triangual_solve)
|
||||
|
||||
#include <ops/declarable/CustomOperations.h>
|
||||
#include <ops/declarable/helpers/triangular_solve.h>
|
||||
namespace nd4j {
|
||||
namespace ops {
|
||||
CUSTOM_OP_IMPL(triangular_solve, 2, 1, false, 0, 0) {
|
||||
auto a = INPUT_VARIABLE(0);
|
||||
auto b = INPUT_VARIABLE(1);
|
||||
auto z = OUTPUT_VARIABLE(0);
|
||||
bool isLower = true;
|
||||
bool useAdjoint = false;
|
||||
|
||||
if (block.numB() > 0) {
|
||||
if (block.numB() > 1) {
|
||||
isLower = B_ARG(0);
|
||||
useAdjoint = B_ARG(1);
|
||||
}
|
||||
else {
|
||||
isLower = B_ARG(0);
|
||||
}
|
||||
}
|
||||
|
||||
REQUIRE_TRUE(a->rankOf() >=2, 0, "triangular_solve: The rank of input left tensor should not be less than 2, but %i is given", a->rankOf());
|
||||
REQUIRE_TRUE(b->rankOf() >=2, 0, "triangular_solve: The rank of input right tensor should not be less than 2, but %i is given", b->rankOf());
|
||||
|
||||
REQUIRE_TRUE(a->sizeAt(-1) == a->sizeAt(-2), 0, "triangular_solve: The last two dimmensions should be equal, but %i and %i are given", a->sizeAt(-1), a->sizeAt(-2));
|
||||
REQUIRE_TRUE(a->sizeAt(-1) == b->sizeAt(-2), 0, "triangular_solve: The last dimmension of left part should be equal to prelast of right part, but %i and %i are given", a->sizeAt(-1), b->sizeAt(-2));
|
||||
auto input = a;
|
||||
if (useAdjoint) {
|
||||
auto adjointA = a->ulike();
|
||||
helpers::adjointMatrix(block.launchContext(), a, isLower, &adjointA);
|
||||
input = new NDArray(adjointA); //.detach();
|
||||
isLower = !isLower;
|
||||
};
|
||||
|
||||
auto res = helpers::triangularSolveFunctor(block.launchContext(), input, b, isLower, useAdjoint, z);
|
||||
if (input != a)
|
||||
delete input;
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
DECLARE_SHAPE_FN(triangular_solve) {
|
||||
auto in0 = inputShape->at(1);
|
||||
auto in1 = inputShape->at(1);
|
||||
auto luShape = ShapeBuilders::copyShapeInfoAndType(in1, in0, true, block.workspace());
|
||||
|
||||
return SHAPELIST(CONSTANT(luShape));
|
||||
}
|
||||
|
||||
DECLARE_TYPES(triangular_solve) {
|
||||
getOpDescriptor()
|
||||
->setAllowedInputTypes({ALL_FLOATS})
|
||||
->setAllowedOutputTypes({ALL_FLOATS})
|
||||
->setSameMode(false);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
|
@ -1041,6 +1041,25 @@ namespace nd4j {
|
|||
DECLARE_OP(matrix_inverse, 1, 1, true);
|
||||
#endif
|
||||
|
||||
/**
|
||||
* triangular_solve op. - reverse Gaussian method for solve systems of linear equations.
|
||||
*
|
||||
* input params:
|
||||
* 0 - the tensor with dimension (x * y * z * ::: * M * M) - left parts of equations
|
||||
* 1 - the tensor with dimension (x * y * z * ::: * M * K) - right parts of equations
|
||||
*
|
||||
* boolean args:
|
||||
* 0 - lower - default is true (optional) - left part is lower triangular matrix
|
||||
* 1 - adjoint - default is false (optional) - indicate input matrix or its adjoint (hermitian addition) should be used
|
||||
*
|
||||
* return value:
|
||||
* tensor with dimension (x * y * z * ::: * M * K) with solutions
|
||||
*
|
||||
*/
|
||||
#if NOT_EXCLUDED(OP_triangular_solve)
|
||||
DECLARE_CUSTOM_OP(triangular_solve, 2, 1, true, 0, 0);
|
||||
#endif
|
||||
|
||||
/**
|
||||
* lu op. - make LUP decomposition of given batch of 2D square matricies
|
||||
*
|
||||
|
|
|
@ -0,0 +1,135 @@
|
|||
/*******************************************************************************
|
||||
* Copyright (c) 2020 Konduit, K.K.
|
||||
*
|
||||
* This program and the accompanying materials are made available under the
|
||||
* terms of the Apache License, Version 2.0 which is available at
|
||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* License for the specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
******************************************************************************/
|
||||
|
||||
//
|
||||
// @author GS <sgazeos@gmail.com>
|
||||
//
|
||||
#include <op_boilerplate.h>
|
||||
#include <NDArray.h>
|
||||
#include <execution/Threads.h>
|
||||
#include "../triangular_solve.h"
|
||||
|
||||
namespace nd4j {
|
||||
namespace ops {
|
||||
namespace helpers {
|
||||
/*
|
||||
* lower triangular process for system of linear equations
|
||||
* x_1 = b_1/a_1,1
|
||||
* x_2 = (b_2 - a_2,1 * x_1) / a_2,2
|
||||
* x_3 = (b_3 - a_3,1 * x_1 - a_3,2 * x_2) / a_3,3
|
||||
* ...
|
||||
* x_M = (b_M - a_M,1 * x_1 - ... a_M,M-1 * x_M-1)/ a_M,M
|
||||
*
|
||||
* output == x
|
||||
* a == leftInput
|
||||
* b == rightInput
|
||||
*
|
||||
* */
|
||||
template <typename T>
|
||||
static void lowerTriangularSolve(nd4j::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool adjoint, NDArray* output) {
|
||||
auto rows = leftInput->rows();
|
||||
//output->t<T>(0,0) = rightInput->t<T>(0,0) / leftInput->t<T>(0,0);
|
||||
for (auto r = 0; r < rows; r++) {
|
||||
auto sum = rightInput->t<T>(r, 0);
|
||||
for (auto c = 0; c < r; c++) {
|
||||
sum -= leftInput->t<T>(r,c) * output->t<T>(c, 0);
|
||||
}
|
||||
output->t<T>(r, 0) = sum / leftInput->t<T>(r, r);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* upper triangular process for system of linear equations
|
||||
* x_M = b_M/a_M,M
|
||||
* x_M-1 = (b_M-1 - a_M-1,M-2 * x_M) / a_M-1,M-1
|
||||
* x_M-2 = (b_M-2 - a_M-2,M-3 * x_M-2 - a_M-2,M-1 * x_M) / a_3,3
|
||||
* ...
|
||||
* x_1 = (b_1 - a_1,2 * x_2 - ... a_1,M * x_M)/ a_1,1
|
||||
*
|
||||
* output == x
|
||||
* a == leftInput
|
||||
* b == rightInput
|
||||
*
|
||||
* */
|
||||
|
||||
template <typename T>
|
||||
static void upperTriangularSolve(nd4j::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool adjoint, NDArray* output) {
|
||||
auto rows = leftInput->rows();
|
||||
|
||||
for (auto r = rows; r > 0; r--) {
|
||||
auto sum = rightInput->t<T>(r - 1, 0);
|
||||
for (auto c = r; c < rows; c++) {
|
||||
sum -= leftInput->t<T>(r - 1, c) * output->t<T>(c, 0);
|
||||
}
|
||||
output->t<T>(r - 1, 0) = sum / leftInput->t<T>(r - 1, r - 1);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static int triangularSolveFunctor_(nd4j::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool lower, bool adjoint, NDArray* output) {
|
||||
auto leftPart = leftInput->allTensorsAlongDimension({-2, -1});
|
||||
auto rightPart = rightInput->allTensorsAlongDimension({-2, -1});
|
||||
auto outputPart = output->allTensorsAlongDimension({-2, -1});
|
||||
|
||||
auto batchLoop = PRAGMA_THREADS_FOR {
|
||||
for (auto i = start; i < stop; i += increment) {
|
||||
if (lower) {
|
||||
lowerTriangularSolve<T>(context, leftPart[i], rightPart[i], adjoint, outputPart[i]);
|
||||
} else {
|
||||
upperTriangularSolve<T>(context, leftPart[i], rightPart[i], adjoint, outputPart[i]);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
samediff::Threads::parallel_tad(batchLoop, 0, leftPart.size(), 1);
|
||||
|
||||
return Status::OK();
|
||||
|
||||
}
|
||||
template <typename T>
|
||||
static void adjointTriangularMatrix_(nd4j::LaunchContext* context, NDArray const* input, bool const lower, NDArray* output) {
|
||||
auto inputPart = input->allTensorsAlongDimension({-2, -1});
|
||||
auto outputPart = output->allTensorsAlongDimension({-2, -1});
|
||||
auto batchLoop = PRAGMA_THREADS_FOR {
|
||||
for (auto batch = start; batch < stop; batch += increment) {
|
||||
if (!lower) {
|
||||
for (auto r = 0; r < input->rows(); r++) {
|
||||
for (auto c = 0; c <= r; c++) {
|
||||
outputPart[batch]->t<T>(r, c) = inputPart[batch]->t<T>(c, r);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (auto r = 0; r < input->rows(); r++) {
|
||||
for (auto c = r; c < input->columns(); c++) {
|
||||
outputPart[batch]->t<T>(r, c) = inputPart[batch]->t<T>(c, r);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
samediff::Threads::parallel_tad(batchLoop, 0, inputPart.size(), 1);
|
||||
}
|
||||
|
||||
int triangularSolveFunctor(nd4j::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool lower, bool adjoint, NDArray* output) {
|
||||
BUILD_SINGLE_SELECTOR(leftInput->dataType(), return triangularSolveFunctor_, (context, leftInput, rightInput, lower, adjoint, output), FLOAT_NATIVE);
|
||||
}
|
||||
|
||||
void adjointMatrix(nd4j::LaunchContext* context, NDArray const* input, bool const lower, NDArray* output) {
|
||||
BUILD_SINGLE_SELECTOR(input->dataType(), adjointTriangularMatrix_, (context, input, lower, output), FLOAT_NATIVE);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,227 @@
|
|||
/*******************************************************************************
|
||||
* Copyright (c) 2020 Konduit, K.K.
|
||||
*
|
||||
* This program and the accompanying materials are made available under the
|
||||
* terms of the Apache License, Version 2.0 which is available at
|
||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* License for the specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
******************************************************************************/
|
||||
|
||||
//
|
||||
// @author GS <sgazeos@gmail.com>
|
||||
//
|
||||
|
||||
#include <op_boilerplate.h>
|
||||
#include <NDArray.h>
|
||||
#include <execution/Threads.h>
|
||||
#include <ConstantTadHelper.h>
|
||||
#include "../triangular_solve.h"
|
||||
|
||||
namespace nd4j {
|
||||
namespace ops {
|
||||
namespace helpers {
|
||||
/*
|
||||
* lower triangular process for system of linear equations
|
||||
* x_1 = b_1/a_1,1
|
||||
* x_2 = (b_2 - a_2,1 * x_1) / a_2,2
|
||||
* x_3 = (b_3 - a_3,1 * x_1 - a_3,2 * x_2) / a_3,3
|
||||
* ...
|
||||
* x_M = (b_M - a_M,1 * x_1 - ... a_M,M-1 * x_M-1)/ a_M,M
|
||||
*
|
||||
* output == x
|
||||
* a == leftInput
|
||||
* b == rightInput
|
||||
*
|
||||
* */
|
||||
template <typename T>
|
||||
static __device__ void lowerTriangularSolve(T const* leftInput, Nd4jLong const* leftInputShape,
|
||||
T const* rightInput, Nd4jLong const* rightInputShape,
|
||||
bool const adjoint, T* output, Nd4jLong* outputShape,
|
||||
Nd4jLong rows) {
|
||||
|
||||
for (auto r = 0; r < rows; r++) {
|
||||
Nd4jLong posY[] = {r, 0};
|
||||
Nd4jLong posX[] = {r, r};
|
||||
auto xIndex = shape::getOffset(leftInputShape, posX, 0);
|
||||
auto yIndex = shape::getOffset(rightInputShape, posY, 0);
|
||||
auto zIndex = shape::getOffset(outputShape, posY, 0);
|
||||
|
||||
auto sum = rightInput[yIndex];
|
||||
for (auto c = 0; c < r; c++) {
|
||||
Nd4jLong posZ[] = {c, 0};
|
||||
Nd4jLong pos[] = {r, c};
|
||||
auto xcIndex = shape::getOffset(leftInputShape, pos, 0);
|
||||
auto zcIndex = shape::getOffset(outputShape, posZ, 0);
|
||||
sum -= leftInput[xcIndex] * output[zcIndex];
|
||||
}
|
||||
output[zIndex] = sum / leftInput[xIndex];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* upper triangular process for system of linear equations
|
||||
* x_M = b_M/a_M,M
|
||||
* x_M-1 = (b_M-1 - a_M-1,M-2 * x_M) / a_M-1,M-1
|
||||
* x_M-2 = (b_M-2 - a_M-2,M-3 * x_M-2 - a_M-2,M-1 * x_M) / a_3,3
|
||||
* ...
|
||||
* x_1 = (b_1 - a_1,2 * x_2 - ... a_1,M * x_M)/ a_1,1
|
||||
*
|
||||
* output == x
|
||||
* a == leftInput
|
||||
* b == rightInput
|
||||
*
|
||||
* */
|
||||
|
||||
template <typename T>
|
||||
static __device__ void upperTriangularSolve(T const* leftInput, Nd4jLong const* leftInputShape,
|
||||
T const* rightInput, Nd4jLong const* rightInputShape, bool const adjoint, T* output,
|
||||
Nd4jLong* outputShape, Nd4jLong rows) {
|
||||
|
||||
for (auto r = rows; r > 0; r--) {
|
||||
Nd4jLong posY[] = {r - 1, 0};
|
||||
Nd4jLong posX[] = {r - 1, r - 1};
|
||||
auto xIndex = shape::getOffset(leftInputShape, posX, 0);
|
||||
auto yIndex = shape::getOffset(rightInputShape, posY, 0);
|
||||
auto zIndex = shape::getOffset(outputShape, posY, 0);
|
||||
auto sum = rightInput[yIndex];
|
||||
for (auto c = r; c < rows; c++) {
|
||||
Nd4jLong posZ[] = {c, 0};
|
||||
Nd4jLong pos[] = {r - 1, c};
|
||||
auto zcIndex = shape::getOffset(outputShape, posZ, 0);
|
||||
auto xcIndex = shape::getOffset(leftInputShape, pos, 0);
|
||||
sum -= leftInput[xcIndex] * output[zcIndex];
|
||||
}
|
||||
output[zIndex] = sum / leftInput[xIndex];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __global__ void triangularSolveKernel(T const* leftInput, Nd4jLong const* leftPartShape,
|
||||
T const* rightInput, Nd4jLong const* rightPartShape, bool const lower, bool const adjoint, T* output,
|
||||
Nd4jLong* outputShape, Nd4jLong* tadLeftShape, Nd4jLong* tadLeftOffset, Nd4jLong* tadRightShape,
|
||||
Nd4jLong* tadRightOffset, Nd4jLong* tadOutputShape, Nd4jLong* tadOutputOffset, Nd4jLong batchNum) {
|
||||
|
||||
__shared__ Nd4jLong rows;
|
||||
if (threadIdx.x == 0) {
|
||||
rows = shape::sizeAt(leftPartShape, -2);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
auto start = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
auto stop = batchNum;
|
||||
auto increment = blockDim.x * gridDim.x;
|
||||
|
||||
for (auto i = start; i < stop; i += increment) {
|
||||
auto pLeftPart = leftInput + tadLeftOffset[i];
|
||||
auto pRightPart = rightInput + tadRightOffset[i];
|
||||
auto pOutputPart = output + tadOutputOffset[i];
|
||||
if (lower) {
|
||||
lowerTriangularSolve<T>(pLeftPart, tadLeftShape, pRightPart, tadRightShape, adjoint, pOutputPart, tadOutputShape, rows);
|
||||
} else {
|
||||
upperTriangularSolve<T>(pLeftPart, tadLeftShape, pRightPart, tadRightShape, adjoint, pOutputPart, tadOutputShape, rows);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static int triangularSolveFunctor_(nd4j::LaunchContext * context, NDArray* leftInput, NDArray* rightInput,
|
||||
bool lower, bool adjoint, NDArray* output) {
|
||||
NDArray::prepareSpecialUse({output}, {leftInput, rightInput});
|
||||
auto leftTads = ConstantTadHelper::getInstance()->tadForDimensions(leftInput->getShapeInfo(), {-2, -1});
|
||||
auto rightTads = ConstantTadHelper::getInstance()->tadForDimensions(rightInput->getShapeInfo(), {-2, -1});
|
||||
auto outputTads = ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), {-2, -1});
|
||||
|
||||
auto stream = context->getCudaStream();
|
||||
T const* leftBuf = reinterpret_cast<T const*>(leftInput->getSpecialBuffer());
|
||||
T const* rightBuf = reinterpret_cast<T const*>(rightInput->getSpecialBuffer());
|
||||
T* outputBuf = reinterpret_cast<T*>(output->specialBuffer());
|
||||
triangularSolveKernel<T><<<128, 128, 256, *stream>>>(leftBuf, leftInput->getSpecialShapeInfo(),
|
||||
rightBuf, rightInput->getSpecialShapeInfo(), lower, adjoint, outputBuf, output->specialShapeInfo(),
|
||||
leftTads.specialShapeInfo(), leftTads.specialOffsets(), rightTads.specialShapeInfo(),
|
||||
rightTads.specialOffsets(), outputTads.specialShapeInfo(), outputTads.specialOffsets(),
|
||||
leftTads.numberOfTads());
|
||||
|
||||
NDArray::registerSpecialUse({output}, {leftInput, rightInput});
|
||||
|
||||
return Status::OK();
|
||||
|
||||
}
|
||||
|
||||
int triangularSolveFunctor(nd4j::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool lower, bool adjoint, NDArray* output) {
|
||||
BUILD_SINGLE_SELECTOR(leftInput->dataType(), return triangularSolveFunctor_, (context, leftInput, rightInput, lower, adjoint, output), FLOAT_NATIVE);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __global__ void upperAdjointKernel(T const* input, T* output,
|
||||
Nd4jLong batchSize, Nd4jLong rows, Nd4jLong columns,
|
||||
Nd4jLong* inputTads, Nd4jLong* inputOffsets, Nd4jLong* outputTads, Nd4jLong* outputOffsets) {
|
||||
|
||||
for (auto b = blockIdx.x; b < batchSize; b += gridDim.x) {
|
||||
auto inputPart = input + inputOffsets[b];
|
||||
auto outputPart = output + outputOffsets[b];
|
||||
for (auto r = threadIdx.x; r < rows; r += blockDim.x) {
|
||||
for (auto c = threadIdx.y; c <= r; c += blockDim.y) {
|
||||
Nd4jLong zPos[] = {r, c};
|
||||
Nd4jLong xPos[] = {c, r};
|
||||
auto zIndex = shape::getOffset(outputTads, zPos);
|
||||
auto xIndex = shape::getOffset(inputTads, xPos);
|
||||
outputPart[zIndex] = inputPart[xIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __global__ void lowerAdjointKernel(T const* input, T* output,
|
||||
Nd4jLong batchSize, Nd4jLong rows, Nd4jLong columns,
|
||||
Nd4jLong* inputTads, Nd4jLong* inputOffsets, Nd4jLong* outputTads, Nd4jLong* outputOffsets) {
|
||||
|
||||
for (auto b = blockIdx.x; b < batchSize; b += gridDim.x) {
|
||||
auto inputPart = input + inputOffsets[b];
|
||||
auto outputPart = output + outputOffsets[b];
|
||||
for (auto r = threadIdx.x; r < rows; r += blockDim.x) {
|
||||
for (auto c = r + threadIdx.y; c < columns; c += blockDim.y) {
|
||||
Nd4jLong zPos[] = {r, c};
|
||||
Nd4jLong xPos[] = {c, r};
|
||||
auto zIndex = shape::getOffset(outputTads, zPos);
|
||||
auto xIndex = shape::getOffset(inputTads, xPos);
|
||||
outputPart[zIndex] = inputPart[xIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void adjointTriangularMatrix_(nd4j::LaunchContext* context, NDArray const* input, bool const lower,
|
||||
NDArray* output) {
|
||||
|
||||
auto inputTads = ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {-2, -1});
|
||||
auto outputTads = ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {-2, -1});
|
||||
auto stream = context->getCudaStream();
|
||||
auto inputBuf = reinterpret_cast<T const*>(input->getSpecialBuffer());
|
||||
auto outputBuf = reinterpret_cast<T*>(output->specialBuffer());
|
||||
auto rows = input->sizeAt(-2);
|
||||
auto columns = input->sizeAt(-1);
|
||||
|
||||
if (lower) {
|
||||
lowerAdjointKernel<T><<<128, 256, 256, *stream>>>(inputBuf, outputBuf, outputTads.numberOfTads(), rows, columns, inputTads.specialShapeInfo(), inputTads.specialOffsets(), outputTads.specialShapeInfo(), outputTads.specialOffsets());
|
||||
} else {
|
||||
upperAdjointKernel<T><<<128, 256, 256, *stream>>>(inputBuf, outputBuf, outputTads.numberOfTads(), rows, columns, inputTads.specialShapeInfo(), inputTads.specialOffsets(), outputTads.specialShapeInfo(), outputTads.specialOffsets());
|
||||
}
|
||||
}
|
||||
|
||||
void adjointMatrix(nd4j::LaunchContext* context, NDArray const* input, bool const lower, NDArray* output) {
|
||||
BUILD_SINGLE_SELECTOR(input->dataType(), adjointTriangularMatrix_, (context, input, lower, output), FLOAT_NATIVE);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,34 @@
|
|||
/*******************************************************************************
|
||||
* Copyright (c) Konduit K.K.
|
||||
*
|
||||
* This program and the accompanying materials are made available under the
|
||||
* terms of the Apache License, Version 2.0 which is available at
|
||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* License for the specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
******************************************************************************/
|
||||
|
||||
//
|
||||
// @author GS <sgazeos@gmail.com>
|
||||
//
|
||||
#ifndef __TRIANGULAR_SOLVE__H_HELPERS__
|
||||
#define __TRIANGULAR_SOLVE__H_HELPERS__
|
||||
#include <op_boilerplate.h>
|
||||
#include <NDArray.h>
|
||||
|
||||
namespace nd4j {
|
||||
namespace ops {
|
||||
namespace helpers {
|
||||
|
||||
int triangularSolveFunctor(nd4j::LaunchContext* context, NDArray* leftInput, NDArray* rightInput, bool lower, bool adjoint, NDArray* output);
|
||||
void adjointMatrix(nd4j::LaunchContext* context, NDArray const* input, bool const lower, NDArray* output);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
|
@ -2734,3 +2734,157 @@ TEST_F(DeclarableOpsTests12, LU_Test_4_2) {
|
|||
ASSERT_TRUE(expP.equalsTo(p));
|
||||
delete res;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
TEST_F(DeclarableOpsTests12, TriangularSolve_Test_1) {
|
||||
|
||||
auto a = NDArrayFactory::create<float>('c', {4, 4}, {
|
||||
3.f, 0.f, 0.f, 0.f,
|
||||
2.f, 1.f, 0.f, 0.f,
|
||||
1.f, 0.f, 1.f, 0.f,
|
||||
1.f, 1.f, 1.f, 1.f
|
||||
});
|
||||
|
||||
auto b = NDArrayFactory::create<float>('c', {4, 1}, {
|
||||
4.f, 2.f, 4.f, 2.f
|
||||
});
|
||||
|
||||
auto exp = NDArrayFactory::create<float>('c', {4, 1}, {
|
||||
1.333333f, -0.6666667f, 2.6666667f, -1.3333333f });
|
||||
|
||||
nd4j::ops::triangular_solve op;
|
||||
|
||||
auto res = op.execute({&a, &b}, {}, {});
|
||||
ASSERT_EQ(res->status(), ND4J_STATUS_OK);
|
||||
auto z = res->at(0);
|
||||
|
||||
// z->printIndexedBuffer("TriangularSolve");
|
||||
|
||||
ASSERT_TRUE(exp.equalsTo(z));
|
||||
delete res;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
TEST_F(DeclarableOpsTests12, TriangularSolve_Test_2) {
|
||||
|
||||
auto a = NDArrayFactory::create<float>('c', {4, 4}, {
|
||||
1.f, 1.f, 1.f, 1.f,
|
||||
0.f, 1.f, 1.f, 0.f,
|
||||
0.f, 0.f, 2.f, 1.f,
|
||||
0.f, 0.f, 0.f, 3.f,
|
||||
});
|
||||
|
||||
auto b = NDArrayFactory::create<float>('c', {4, 1}, {
|
||||
2.f, 4.f, 2.f, 4.f
|
||||
});
|
||||
|
||||
auto exp = NDArrayFactory::create<float>('c', {4, 1}, {
|
||||
2.f, 4.f, 1.f, 1.3333333f });
|
||||
|
||||
nd4j::ops::triangular_solve op;
|
||||
|
||||
auto res = op.execute({&a, &b}, {}, {});
|
||||
ASSERT_EQ(res->status(), ND4J_STATUS_OK);
|
||||
auto z = res->at(0);
|
||||
|
||||
// z->printIndexedBuffer("TriangularSolve");
|
||||
|
||||
ASSERT_TRUE(exp.equalsTo(z));
|
||||
delete res;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
TEST_F(DeclarableOpsTests12, TriangularSolve_Test_3) {
|
||||
|
||||
auto a = NDArrayFactory::create<float>('c', {2, 4, 4}, {
|
||||
3.f, 0.f, 0.f, 0.f,
|
||||
2.f, 1.f, 0.f, 0.f,
|
||||
1.f, 0.f, 1.f, 0.f,
|
||||
1.f, 1.f, 1.f, 1.f,
|
||||
|
||||
3.f, 0.f, 0.f, 0.f,
|
||||
2.f, 1.f, 0.f, 0.f,
|
||||
1.f, 0.f, 1.f, 0.f,
|
||||
1.f, 1.f, 1.f, 1.f
|
||||
});
|
||||
|
||||
auto b = NDArrayFactory::create<float>('c', {2, 4, 1}, {
|
||||
4.f, 2.f, 4.f, 2.f,
|
||||
4.f, 2.f, 4.f, 2.f
|
||||
});
|
||||
|
||||
auto exp = NDArrayFactory::create<float>('c', {2, 4, 1}, {
|
||||
1.333333f, -0.6666667f, 2.6666667f, -1.3333333f,
|
||||
1.333333f, -0.6666667f, 2.6666667f, -1.3333333f
|
||||
});
|
||||
|
||||
nd4j::ops::triangular_solve op;
|
||||
|
||||
auto res = op.execute({&a, &b}, {}, {});
|
||||
ASSERT_EQ(res->status(), ND4J_STATUS_OK);
|
||||
auto z = res->at(0);
|
||||
|
||||
// z->printIndexedBuffer("TriangularSolve");
|
||||
|
||||
ASSERT_TRUE(exp.equalsTo(z));
|
||||
delete res;
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
TEST_F(DeclarableOpsTests12, TriangularSolve_Test_4) {
|
||||
|
||||
auto a = NDArrayFactory::create<float>('c', {4, 4}, {
|
||||
1.f, 1.f, 1.f, 1.f,
|
||||
0.f, 1.f, 1.f, 0.f,
|
||||
0.f, 0.f, 2.f, 1.f,
|
||||
0.f, 0.f, 0.f, 3.f,
|
||||
});
|
||||
|
||||
auto b = NDArrayFactory::create<float>('c', {4, 1}, {
|
||||
2.f, 4.f, 2.f, 4.f
|
||||
});
|
||||
|
||||
auto exp = NDArrayFactory::create<float>('c', {4, 1}, {
|
||||
-3.3333333f, 3.6666666f, 0.333333f, 1.3333333f
|
||||
});
|
||||
|
||||
nd4j::ops::triangular_solve op;
|
||||
|
||||
auto res = op.execute({&a, &b}, {}, {}, {false});
|
||||
ASSERT_EQ(res->status(), ND4J_STATUS_OK);
|
||||
auto z = res->at(0);
|
||||
|
||||
// z->printIndexedBuffer("TriangularSolve");
|
||||
|
||||
ASSERT_TRUE(exp.equalsTo(z));
|
||||
delete res;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
TEST_F(DeclarableOpsTests12, TriangularSolve_Test_5) {
|
||||
|
||||
auto a = NDArrayFactory::create<float>('c', {4, 4}, {
|
||||
5.f, 1., -3.f, 3.f,
|
||||
0.f, 1.f, 1.f, -1.f,
|
||||
0.f, 0.f, 2.f, -9.f,
|
||||
0.f, 0.f, 0.f, 4.f
|
||||
});
|
||||
|
||||
auto b = NDArrayFactory::create<float>('c', {4, 1}, {
|
||||
5.f, 2.f, 0.f, -3.f
|
||||
});
|
||||
|
||||
auto exp = NDArrayFactory::create<float>('c', {4, 1}, {
|
||||
1.f, 1.f, 1.f, 1.f
|
||||
});
|
||||
|
||||
nd4j::ops::triangular_solve op;
|
||||
|
||||
auto res = op.execute({&a, &b}, {}, {}, {false, true});
|
||||
ASSERT_EQ(res->status(), ND4J_STATUS_OK);
|
||||
auto z = res->at(0);
|
||||
|
||||
z->printIndexedBuffer("TriangularSolve with adjoint");
|
||||
|
||||
ASSERT_TRUE(exp.equalsTo(z));
|
||||
delete res;
|
||||
}
|
||||
|
|
|
@ -622,7 +622,8 @@ public class ImportClassMapping {
|
|||
org.nd4j.linalg.api.ops.custom.Igamma.class,
|
||||
org.nd4j.linalg.api.ops.custom.Igammac.class,
|
||||
org.nd4j.linalg.api.ops.custom.Digamma.class,
|
||||
org.nd4j.linalg.api.ops.custom.Lu.class
|
||||
org.nd4j.linalg.api.ops.custom.Lu.class,
|
||||
org.nd4j.linalg.api.ops.custom.TriangularSolve.class
|
||||
);
|
||||
|
||||
static {
|
||||
|
|
|
@ -0,0 +1,43 @@
|
|||
package org.nd4j.linalg.api.ops.custom;
|
||||
|
||||
import lombok.NoArgsConstructor;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.autodiff.samediff.SameDiff;
|
||||
import org.nd4j.base.Preconditions;
|
||||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
import org.nd4j.linalg.api.ops.DynamicCustomOp;
|
||||
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
|
||||
@NoArgsConstructor
|
||||
public class TriangularSolve extends DynamicCustomOp {
|
||||
|
||||
public TriangularSolve(INDArray matrix, INDArray rhs, boolean lower, boolean adjoint) {
|
||||
addInputArgument(matrix, rhs);
|
||||
addBArgument(lower, adjoint);
|
||||
}
|
||||
|
||||
public TriangularSolve(SameDiff sameDiff, SDVariable matrix, SDVariable rhs,
|
||||
SDVariable lower, SDVariable adjoint) {
|
||||
super(sameDiff, new SDVariable[] {matrix, rhs, lower, adjoint});
|
||||
}
|
||||
|
||||
@Override
|
||||
public String opName() {
|
||||
return "triangular_solve";
|
||||
}
|
||||
|
||||
@Override
|
||||
public String tensorflowName() {
|
||||
return "MatrixTriangularSolve";
|
||||
}
|
||||
|
||||
@Override
|
||||
public List<DataType> calculateOutputDataTypes(List<DataType> dataTypes) {
|
||||
int n = args().length;
|
||||
Preconditions.checkState(dataTypes != null && dataTypes.size() == n, "Expected %s input data types for %s, got %s", n, getClass(), dataTypes);
|
||||
return Collections.singletonList(dataTypes.get(0));
|
||||
}
|
||||
}
|
|
@ -1653,4 +1653,27 @@ public class CustomOpsTests extends BaseNd4jTest {
|
|||
INDArray[] ret = Nd4j.exec(op);
|
||||
assertArrayEquals(image.shape(), ret[0].shape());
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testTriangularSolve() {
|
||||
INDArray a = Nd4j.createFromArray(new float[]{
|
||||
3.f, 0.f, 0.f, 0.f,
|
||||
2.f, 1.f, 0.f, 0.f,
|
||||
1.f, 0.f, 1.f, 0.f,
|
||||
1.f, 1.f, 1.f, 1.f
|
||||
}).reshape(4, 4);
|
||||
|
||||
INDArray b = Nd4j.createFromArray(new float[]{
|
||||
4.f, 2.f, 4.f, 2.f
|
||||
}).reshape(4, 1);
|
||||
|
||||
INDArray expected = Nd4j.createFromArray(new float[]{
|
||||
1.333333f, -0.6666667f, 2.6666667f, -1.3333333f
|
||||
}).reshape(4, 1);
|
||||
|
||||
val op = new TriangularSolve(a, b, true, false);
|
||||
INDArray[] ret = Nd4j.exec(op);
|
||||
|
||||
assertEquals(expected, ret[0]);
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue