Refactored fake_quant_with_min_max_vars op.
parent
352f1eee80
commit
3c0c59ab88
|
@ -74,6 +74,20 @@ namespace helpers {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
static void WiseMinMax(NDArray* input, T min, T max, NDArray* output) {
|
||||||
|
auto wiseMinMax = LAMBDA_T(x, min, max) {
|
||||||
|
if (x < min) {
|
||||||
|
return min;
|
||||||
|
}
|
||||||
|
else if (x > max)
|
||||||
|
return max;
|
||||||
|
return x;
|
||||||
|
};
|
||||||
|
|
||||||
|
input->applyLambda<T>(wiseMinMax, output);
|
||||||
|
}
|
||||||
|
|
||||||
template <typename T>
|
template <typename T>
|
||||||
void fakeQuantWithMinMaxVars_(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
void fakeQuantWithMinMaxVars_(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
||||||
int lowIntBound = narrowed ? 1 : 0;
|
int lowIntBound = narrowed ? 1 : 0;
|
||||||
|
@ -81,62 +95,16 @@ namespace helpers {
|
||||||
|
|
||||||
const float quant_min_float = static_cast<float>(lowIntBound);
|
const float quant_min_float = static_cast<float>(lowIntBound);
|
||||||
const float quant_max_float = static_cast<float>(upperIntBound);
|
const float quant_max_float = static_cast<float>(upperIntBound);
|
||||||
T scale = (max->t<T>(0) - min->t<T>(0)) / (quant_max_float - quant_min_float);
|
T nudged_min, nudged_max, scale;
|
||||||
const T zero_point_from_min = quant_min_float - min->e<T>(0) / scale;
|
|
||||||
const uint16_t nudged_zero_point = [zero_point_from_min, lowIntBound,
|
|
||||||
quant_min_float, upperIntBound,
|
|
||||||
quant_max_float] {
|
|
||||||
if (zero_point_from_min < quant_min_float) {
|
|
||||||
return static_cast<uint16_t>(lowIntBound);
|
|
||||||
}
|
|
||||||
if (zero_point_from_min > quant_max_float) {
|
|
||||||
return static_cast<uint16_t>(upperIntBound);
|
|
||||||
}
|
|
||||||
return static_cast<uint16_t>(roundf(zero_point_from_min));
|
|
||||||
}();
|
|
||||||
|
|
||||||
auto nudged_min = (quant_min_float - nudged_zero_point) * (scale);
|
Nudge<T>(min->t<T>(0), max->t<T>(0), quant_min_float, quant_max_float, &scale, &nudged_min, &nudged_max);
|
||||||
auto nudged_max = (quant_max_float - nudged_zero_point) * (scale);
|
WiseMinMax<T>(input, nudged_min, nudged_max, output);
|
||||||
//input->applyScalar(scalar::CompareAndSet, nudged_max, clamped, nullptr); //.cwiseMin(nudged_max).cwiseMax(nudged_min);
|
|
||||||
//input->applyScalar(scalar::CompareAndSet, nudged_min, clamped, nullptr); //.cwiseMin(nudged_max).cwiseMax(nudged_min);
|
|
||||||
auto wiseMax = LAMBDA_T(x, nudged_min) {
|
|
||||||
if (x < nudged_min) {
|
|
||||||
return nudged_min;
|
|
||||||
}
|
|
||||||
return x;
|
|
||||||
|
|
||||||
};
|
|
||||||
auto wiseMin = LAMBDA_T(x, nudged_max) {
|
|
||||||
if (x > nudged_max) {
|
|
||||||
return nudged_max;
|
|
||||||
}
|
|
||||||
return x;
|
|
||||||
};
|
|
||||||
auto scaleTensor(*input); // = NDArrayFactory::create(input->ordering(), input->getShapeAsVector(), input->getWorkspace());
|
|
||||||
auto clamped(*input); // = NDArrayFactory::create(input->ordering(), input->getShapeAsVector(), input->getWorkspace());
|
|
||||||
scaleTensor.assign(scale);
|
|
||||||
input->applyLambda<T>(wiseMin, &clamped);
|
|
||||||
// const auto clamped = inputs.cwiseMin(nudged_max).cwiseMax(nudged_min);
|
|
||||||
clamped.applyLambda<T>(wiseMax, output);
|
|
||||||
// const auto clamped_shifted = clamped - nudged_min;
|
|
||||||
*output -= nudged_min;
|
*output -= nudged_min;
|
||||||
// auto nudgedScale = scale;
|
(*output) /= scale;
|
||||||
(*output) /= scaleTensor;
|
(*output) += T(0.5f);
|
||||||
// (*output) += T(0.5f);
|
output->applyTransform(transform::Floor, nullptr, nullptr);
|
||||||
output->applyTransform(transform::Round, nullptr, nullptr);
|
(*output) *= scale;
|
||||||
(*output) *= scaleTensor;
|
|
||||||
(*output) += nudged_min;
|
(*output) += nudged_min;
|
||||||
//output->printIndexedBuffer("FAKE QUANTED");
|
|
||||||
/*
|
|
||||||
const auto nudged_scale_repl = inputs.constant(nudged_scale);
|
|
||||||
|
|
||||||
const auto clamped = inputs.cwiseMin(nudged_max).cwiseMax(nudged_min);
|
|
||||||
const auto clamped_shifted = clamped - nudged_min;
|
|
||||||
*output = (clamped_shifted / nudged_scale_repl + 0.5f).floor() *
|
|
||||||
nudged_scale_repl +
|
|
||||||
nudged_min;
|
|
||||||
*/
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void fakeQuantWithMinMaxVars(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
void fakeQuantWithMinMaxVars(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
||||||
|
|
Loading…
Reference in New Issue