Implemented fake_quant_with_min_max_per_channel helper for cpu platform. The first approach.
parent
d0cbd33b0e
commit
352f1eee80
|
@ -25,6 +25,55 @@ namespace nd4j {
|
|||
namespace ops {
|
||||
namespace helpers {
|
||||
|
||||
template <typename T>
|
||||
static void Nudge(T min, T max, T quant_min, T quant_max, T* scale, T* nudged_min, T* nudged_max) {
|
||||
*scale = (max - min) / (quant_max - quant_min);
|
||||
auto zero_point_from_min = quant_min - min / *scale;
|
||||
uint16_t const nudged_zero_point = [zero_point_from_min, quant_min, quant_max] {
|
||||
if (zero_point_from_min < quant_min) {
|
||||
return static_cast<uint16_t>(quant_min);
|
||||
}
|
||||
if (zero_point_from_min > quant_max) {
|
||||
return static_cast<uint16_t>(quant_max);
|
||||
}
|
||||
return nd4j::math::nd4j_round<T,uint16_t>(zero_point_from_min);
|
||||
}();
|
||||
*nudged_min = (quant_min - nudged_zero_point) * (*scale);
|
||||
*nudged_max = (quant_max - nudged_zero_point) * (*scale);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void fakeQuantWithMinMaxVarsPerChannel_(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
||||
int lowIntBound = narrowed ? 1 : 0;
|
||||
int upperIntBound = 1 << numBits - 1;
|
||||
|
||||
const float quant_min_float = static_cast<float>(lowIntBound);
|
||||
const float quant_max_float = static_cast<float>(upperIntBound);
|
||||
// auto scaleTensor(*input); // = NDArrayFactory::create(input->ordering(), input->getShapeAsVector(), input->getWorkspace());
|
||||
auto clamped(*input); // = NDArrayFactory::create(input->ordering(), input->getShapeAsVector(), input->getWorkspace());
|
||||
for (auto i = 0; i < min->lengthOf(); i++) {
|
||||
T scale, nudged_min, nudged_max;
|
||||
Nudge<T>(min->t<T>(i), max->t<T>(i), quant_min_float, quant_max_float, &scale, &nudged_min, &nudged_max);
|
||||
auto wiseMinMax = LAMBDA_T(x, nudged_min, nudged_max) {
|
||||
if (x < nudged_min) {
|
||||
return nudged_min;
|
||||
}
|
||||
else if (x > nudged_max)
|
||||
return nudged_max;
|
||||
return x;
|
||||
};
|
||||
// scaleTensor.assign(scale);
|
||||
input->applyLambda<T>(wiseMinMax, &clamped);
|
||||
clamped -= nudged_min;
|
||||
// auto nudgedScale = scale;
|
||||
clamped /= scale;
|
||||
clamped += T(0.5f);
|
||||
clamped.applyTransform(transform::Floor, output, nullptr);
|
||||
(*output) *= scale;
|
||||
(*output) += nudged_min;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void fakeQuantWithMinMaxVars_(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
||||
int lowIntBound = narrowed ? 1 : 0;
|
||||
|
@ -35,15 +84,15 @@ namespace helpers {
|
|||
T scale = (max->t<T>(0) - min->t<T>(0)) / (quant_max_float - quant_min_float);
|
||||
const T zero_point_from_min = quant_min_float - min->e<T>(0) / scale;
|
||||
const uint16_t nudged_zero_point = [zero_point_from_min, lowIntBound,
|
||||
quant_min_float, upperIntBound,
|
||||
quant_max_float] {
|
||||
if (zero_point_from_min < quant_min_float) {
|
||||
return static_cast<uint16_t>(lowIntBound);
|
||||
}
|
||||
if (zero_point_from_min > quant_max_float) {
|
||||
return static_cast<uint16_t>(upperIntBound);
|
||||
}
|
||||
return static_cast<uint16_t>(roundf(zero_point_from_min));
|
||||
quant_min_float, upperIntBound,
|
||||
quant_max_float] {
|
||||
if (zero_point_from_min < quant_min_float) {
|
||||
return static_cast<uint16_t>(lowIntBound);
|
||||
}
|
||||
if (zero_point_from_min > quant_max_float) {
|
||||
return static_cast<uint16_t>(upperIntBound);
|
||||
}
|
||||
return static_cast<uint16_t>(roundf(zero_point_from_min));
|
||||
}();
|
||||
|
||||
auto nudged_min = (quant_min_float - nudged_zero_point) * (scale);
|
||||
|
@ -71,10 +120,10 @@ namespace helpers {
|
|||
clamped.applyLambda<T>(wiseMax, output);
|
||||
// const auto clamped_shifted = clamped - nudged_min;
|
||||
*output -= nudged_min;
|
||||
// auto nudgedScale = scale;
|
||||
// auto nudgedScale = scale;
|
||||
(*output) /= scaleTensor;
|
||||
(*output) += T(0.5f);
|
||||
output->applyTransform(transform::Floor, nullptr, nullptr);
|
||||
// (*output) += T(0.5f);
|
||||
output->applyTransform(transform::Round, nullptr, nullptr);
|
||||
(*output) *= scaleTensor;
|
||||
(*output) += nudged_min;
|
||||
//output->printIndexedBuffer("FAKE QUANTED");
|
||||
|
@ -94,7 +143,7 @@ namespace helpers {
|
|||
BUILD_SINGLE_SELECTOR(input->dataType(), fakeQuantWithMinMaxVars_, (input, min, max, numBits, narrowed, output), FLOAT_TYPES);
|
||||
}
|
||||
void fakeQuantWithMinMaxVarsPerChannel(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
||||
BUILD_SINGLE_SELECTOR(input->dataType(), fakeQuantWithMinMaxVars_, (input, min, max, numBits, narrowed, output), FLOAT_TYPES);
|
||||
BUILD_SINGLE_SELECTOR(input->dataType(), fakeQuantWithMinMaxVarsPerChannel_, (input, min, max, numBits, narrowed, output), FLOAT_TYPES);
|
||||
}
|
||||
|
||||
BUILD_SINGLE_TEMPLATE(template void fakeQuantWithMinMaxVars_, (NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output), FLOAT_TYPES);
|
||||
|
|
|
@ -2159,8 +2159,8 @@ TEST_F(DeclarableOpsTests10, FakeQuantWithMinMaxVars_Test_3) {
|
|||
|
||||
NDArray x = NDArrayFactory::create<double>('c', {1,2,3,1}, {-63.80, -63.75, -63.4, -63.5, 0.0, 0.1});
|
||||
NDArray exp = NDArrayFactory::create<double>('c', {1,2,3,1}, {-63.75, -63.75, -63.251953, -63.251953, 0.0, 0.0});
|
||||
NDArray min = NDArrayFactory::create<double>(-63.65);
|
||||
NDArray max = NDArrayFactory::create<double>(0.1);
|
||||
NDArray min = NDArrayFactory::create<double>('c', {1},{-63.65});
|
||||
NDArray max = NDArrayFactory::create<double>('c', {1}, {0.1});
|
||||
|
||||
nd4j::ops::fake_quant_with_min_max_vars_per_channel op;
|
||||
auto results = op.execute({&x, &min, &max}, {}, {});
|
||||
|
@ -2178,8 +2178,8 @@ TEST_F(DeclarableOpsTests10, FakeQuantWithMinMaxVars_Test_3) {
|
|||
////////////////////////////////////////////////////////////////////
|
||||
TEST_F(DeclarableOpsTests10, FakeQuantWithMinMaxVars_Test_4) {
|
||||
|
||||
NDArray x = NDArrayFactory::create<double>('c', {2,4,5,3});
|
||||
NDArray exp = NDArrayFactory::create<double>('c', {2,4,5,3},
|
||||
NDArray x = NDArrayFactory::create<float>('c', {2,4,5,3});
|
||||
NDArray exp = NDArrayFactory::create<float>('c', {2,4,5,3},
|
||||
{1.0588236, 1.9607843, 3.019608, 4.0588236, 5.098039, 6.039216, 7.0588236, 8.039216, 9.058824,
|
||||
10.058824, 10.980392, 12.078432, 13.058824, 13.921569, 15.09804, 16.058825, 17.058825, 18.117647,
|
||||
19.058825, 20., 21.137257, 22.058825, 22.941177, 23.882355, 25.058825, 26.078432, 26.901962,
|
||||
|
@ -2194,16 +2194,19 @@ TEST_F(DeclarableOpsTests10, FakeQuantWithMinMaxVars_Test_4) {
|
|||
45., 50., 70., 45., 50., 70., 45., 50., 70.,
|
||||
45., 50., 70., 45., 50., 70., 45., 50., 70.,
|
||||
45., 50., 70.});
|
||||
NDArray min = NDArrayFactory::create<double>({20., 20., 20.});
|
||||
NDArray max = NDArrayFactory::create<double>({65., 70., 90.});
|
||||
|
||||
NDArray min = NDArrayFactory::create<float>({20., 20., 20.});
|
||||
NDArray max = NDArrayFactory::create<float>({65., 70., 90.});
|
||||
x.linspace(1.);
|
||||
nd4j::ops::fake_quant_with_min_max_vars_per_channel op;
|
||||
auto results = op.execute({&x, &min, &max}, {}, {});
|
||||
|
||||
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
||||
|
||||
auto result = results->at(0);
|
||||
// result->printIndexedBuffer("Quantized2");
|
||||
result->printBuffer("Quantized per channels 4");
|
||||
exp.printBuffer("Quantized per channest E");
|
||||
auto diff = *result - exp;
|
||||
diff.printIndexedBuffer("Difference");
|
||||
ASSERT_TRUE(exp.isSameShapeStrict(result));
|
||||
ASSERT_TRUE(exp.equalsTo(result));
|
||||
|
||||
|
|
Loading…
Reference in New Issue