2021-02-01 13:31:45 +01:00
|
|
|
/* ******************************************************************************
|
|
|
|
*
|
2019-06-06 14:21:15 +02:00
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
2021-02-01 13:31:45 +01:00
|
|
|
* See the NOTICE file distributed with this work for additional
|
|
|
|
* information regarding copyright ownership.
|
2019-06-06 14:21:15 +02:00
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// Created by raver119 on 23.11.17.
|
|
|
|
//
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <system/op_boilerplate.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#if NOT_EXCLUDED(OP_squaredsubtract)
|
|
|
|
|
|
|
|
#include <ops/declarable/generic/helpers/BroadcastHelper.h>
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
namespace sd {
|
2019-06-06 14:21:15 +02:00
|
|
|
namespace ops {
|
|
|
|
BROADCASTABLE_OP_IMPL(squaredsubtract, 0, 0) {
|
|
|
|
auto x = INPUT_VARIABLE(0);
|
|
|
|
auto y = INPUT_VARIABLE(1);
|
|
|
|
auto z = OUTPUT_VARIABLE(0);
|
|
|
|
|
|
|
|
BROADCAST_CHECK_EMPTY(x,y,z);
|
|
|
|
|
|
|
|
auto tZ = BroadcastHelper::broadcastApply(BROADCAST(SquaredSubtract), x, y, z);
|
|
|
|
if (tZ == nullptr)
|
|
|
|
return ND4J_STATUS_KERNEL_FAILURE;
|
|
|
|
else if (tZ != z) {
|
|
|
|
OVERWRITE_RESULT(tZ);
|
|
|
|
}
|
|
|
|
|
|
|
|
return Status::OK();
|
|
|
|
}
|
|
|
|
DECLARE_SYN(squareddifference, squaredsubtract);
|
|
|
|
|
|
|
|
DECLARE_TYPES(squaredsubtract) {
|
|
|
|
getOpDescriptor()
|
|
|
|
->setAllowedInputTypes(0, DataType::ANY)
|
|
|
|
->setAllowedInputTypes(1, DataType::ANY)
|
|
|
|
->setAllowedOutputTypes(0, DataType::INHERIT);
|
|
|
|
}
|
|
|
|
|
|
|
|
CUSTOM_OP_IMPL(squaredsubtract_bp, 3, 2, false, 0, 0) {
|
|
|
|
auto x = INPUT_VARIABLE(0);
|
|
|
|
auto y = INPUT_VARIABLE(1);
|
|
|
|
auto epsNext = INPUT_VARIABLE(2);
|
|
|
|
|
|
|
|
auto gradX = OUTPUT_VARIABLE(0);
|
|
|
|
auto gradY = OUTPUT_VARIABLE(1);
|
|
|
|
|
|
|
|
/*
|
|
|
|
auto lambdaX = LAMBDA_TTT(_e, _x, _y) {
|
|
|
|
return _e * (T) 2.0 * (_x - _y) ;
|
|
|
|
};
|
|
|
|
|
|
|
|
auto lambdaY = LAMBDA_TTT(_e, _x, _y) {
|
|
|
|
return _e * (T) 2.0 * (_y - _x);
|
|
|
|
};
|
|
|
|
*/
|
|
|
|
|
|
|
|
auto ts = NDArrayFactory::create(x->dataType(), 2, block.launchContext());
|
|
|
|
|
|
|
|
|
|
|
|
if (x->isSameShape(y)) {
|
|
|
|
// PWT case case
|
|
|
|
|
|
|
|
// X gradient
|
|
|
|
//epsNext->applyTriplewiseLambda(x, y, lambdaX, gradX);
|
|
|
|
gradX->assign((*epsNext) * ts * ((*x) - (*y)));
|
|
|
|
|
|
|
|
// Y gradient
|
|
|
|
//epsNext->applyTriplewiseLambda(x, y, lambdaY, gradY);
|
|
|
|
gradY->assign((*epsNext) * ts * ((*y) - (*x)));
|
|
|
|
|
|
|
|
} else if (y->isScalar()) {
|
|
|
|
// scalar case
|
|
|
|
auto tmpX = x->reduceNumber(reduce::Sum);
|
|
|
|
gradY->assign(tmpX);
|
2019-12-20 20:35:39 +01:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
//epsNext->applyPairwiseLambda(x, lambdaS, gradX);
|
2019-12-06 16:58:37 +01:00
|
|
|
gradX->assign((*epsNext) * ts * ((*x) - (*y)));
|
2019-06-06 14:21:15 +02:00
|
|
|
} else {
|
|
|
|
// broadcast case
|
|
|
|
|
|
|
|
auto preX = x->dup();
|
|
|
|
auto preY = y->dup();
|
|
|
|
|
|
|
|
auto targetShape = epsNext->getShapeAsVector();
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
preX.tileToShape(targetShape, preX);
|
|
|
|
preY.tileToShape(targetShape, preY);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
|
|
|
|
//epsNext->applyTriplewiseLambda(x, y, lambdaX, preX);
|
|
|
|
//epsNext->applyTriplewiseLambda(x, y, lambdaY, preY);
|
|
|
|
auto resX = (*epsNext) * ts * ((*x) - (*y));
|
2019-12-20 20:35:39 +01:00
|
|
|
preX.assign(resX);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto resY = (*epsNext) * ts * ((*y) - (*x));
|
2019-12-20 20:35:39 +01:00
|
|
|
preY.assign(resY);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
auto axisX = ShapeUtils::evalBroadcastBackwardAxis(x->shapeInfo(), epsNext->shapeInfo());
|
|
|
|
auto axisY = ShapeUtils::evalBroadcastBackwardAxis(y->shapeInfo(), epsNext->shapeInfo());
|
|
|
|
|
|
|
|
if (axisX.size() > 0) {
|
2019-12-20 20:35:39 +01:00
|
|
|
auto sum = preX.reduceAlongDimension(reduce::Sum, axisX);
|
2019-06-06 14:21:15 +02:00
|
|
|
gradX->assign(sum);
|
2019-12-20 20:35:39 +01:00
|
|
|
} else
|
2019-06-06 14:21:15 +02:00
|
|
|
gradX->assign(preX);
|
|
|
|
|
|
|
|
if (axisY.size() > 0) {
|
2019-12-20 20:35:39 +01:00
|
|
|
auto sum = preY.reduceAlongDimension(reduce::Sum, axisY);
|
2019-06-06 14:21:15 +02:00
|
|
|
gradY->assign(sum);
|
|
|
|
} else
|
|
|
|
gradY->assign(preY);
|
|
|
|
}
|
|
|
|
|
|
|
|
return Status::OK();
|
|
|
|
}
|
|
|
|
|
|
|
|
DECLARE_SHAPE_FN(squaredsubtract_bp) {
|
|
|
|
auto x = inputShape->at(0);
|
|
|
|
auto y = inputShape->at(1);
|
|
|
|
auto e = inputShape->at(2);
|
|
|
|
|
|
|
|
// eps always has shape of x
|
|
|
|
// grad always has shape of y
|
|
|
|
|
|
|
|
Nd4jLong *shapeE;
|
|
|
|
Nd4jLong *shapeG;
|
|
|
|
|
|
|
|
COPY_SHAPE(x, shapeE);
|
|
|
|
COPY_SHAPE(y, shapeG);
|
|
|
|
|
|
|
|
return SHAPELIST(CONSTANT(shapeE), CONSTANT(shapeG));
|
|
|
|
}
|
|
|
|
|
|
|
|
DECLARE_TYPES(squaredsubtract_bp) {
|
|
|
|
getOpDescriptor()
|
|
|
|
->setAllowedInputTypes(DataType::ANY)
|
|
|
|
->setAllowedOutputTypes({ALL_FLOATS});
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|