/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // Created by raver119 on 23.11.17. // #include #if NOT_EXCLUDED(OP_squaredsubtract) #include #include namespace sd { namespace ops { BROADCASTABLE_OP_IMPL(squaredsubtract, 0, 0) { auto x = INPUT_VARIABLE(0); auto y = INPUT_VARIABLE(1); auto z = OUTPUT_VARIABLE(0); BROADCAST_CHECK_EMPTY(x,y,z); auto tZ = BroadcastHelper::broadcastApply(BROADCAST(SquaredSubtract), x, y, z); if (tZ == nullptr) return ND4J_STATUS_KERNEL_FAILURE; else if (tZ != z) { OVERWRITE_RESULT(tZ); } return Status::OK(); } DECLARE_SYN(squareddifference, squaredsubtract); DECLARE_TYPES(squaredsubtract) { getOpDescriptor() ->setAllowedInputTypes(0, DataType::ANY) ->setAllowedInputTypes(1, DataType::ANY) ->setAllowedOutputTypes(0, DataType::INHERIT); } CUSTOM_OP_IMPL(squaredsubtract_bp, 3, 2, false, 0, 0) { auto x = INPUT_VARIABLE(0); auto y = INPUT_VARIABLE(1); auto epsNext = INPUT_VARIABLE(2); auto gradX = OUTPUT_VARIABLE(0); auto gradY = OUTPUT_VARIABLE(1); /* auto lambdaX = LAMBDA_TTT(_e, _x, _y) { return _e * (T) 2.0 * (_x - _y) ; }; auto lambdaY = LAMBDA_TTT(_e, _x, _y) { return _e * (T) 2.0 * (_y - _x); }; */ auto ts = NDArrayFactory::create(x->dataType(), 2, block.launchContext()); if (x->isSameShape(y)) { // PWT case case // X gradient //epsNext->applyTriplewiseLambda(x, y, lambdaX, gradX); gradX->assign((*epsNext) * ts * ((*x) - (*y))); // Y gradient //epsNext->applyTriplewiseLambda(x, y, lambdaY, gradY); gradY->assign((*epsNext) * ts * ((*y) - (*x))); } else if (y->isScalar()) { // scalar case auto tmpX = x->reduceNumber(reduce::Sum); gradY->assign(tmpX); //epsNext->applyPairwiseLambda(x, lambdaS, gradX); gradX->assign((*epsNext) * ts * ((*x) - (*y))); } else { // broadcast case auto preX = x->dup(); auto preY = y->dup(); auto targetShape = epsNext->getShapeAsVector(); preX.tileToShape(targetShape, preX); preY.tileToShape(targetShape, preY); //epsNext->applyTriplewiseLambda(x, y, lambdaX, preX); //epsNext->applyTriplewiseLambda(x, y, lambdaY, preY); auto resX = (*epsNext) * ts * ((*x) - (*y)); preX.assign(resX); auto resY = (*epsNext) * ts * ((*y) - (*x)); preY.assign(resY); auto axisX = ShapeUtils::evalBroadcastBackwardAxis(x->shapeInfo(), epsNext->shapeInfo()); auto axisY = ShapeUtils::evalBroadcastBackwardAxis(y->shapeInfo(), epsNext->shapeInfo()); if (axisX.size() > 0) { auto sum = preX.reduceAlongDimension(reduce::Sum, axisX); gradX->assign(sum); } else gradX->assign(preX); if (axisY.size() > 0) { auto sum = preY.reduceAlongDimension(reduce::Sum, axisY); gradY->assign(sum); } else gradY->assign(preY); } return Status::OK(); } DECLARE_SHAPE_FN(squaredsubtract_bp) { auto x = inputShape->at(0); auto y = inputShape->at(1); auto e = inputShape->at(2); // eps always has shape of x // grad always has shape of y Nd4jLong *shapeE; Nd4jLong *shapeG; COPY_SHAPE(x, shapeE); COPY_SHAPE(y, shapeG); return SHAPELIST(CONSTANT(shapeE), CONSTANT(shapeG)); } DECLARE_TYPES(squaredsubtract_bp) { getOpDescriptor() ->setAllowedInputTypes(DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } } } #endif