2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author raver119@gmail.com
|
|
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <ops/declarable/helpers/lrn.h>
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <graph/Status.h>
|
|
|
|
#include <helpers/ConstantTadHelper.h>
|
2019-11-13 15:15:18 +01:00
|
|
|
#include <execution/Threads.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
namespace sd {
|
2019-06-06 14:21:15 +02:00
|
|
|
namespace ops {
|
|
|
|
namespace helpers {
|
|
|
|
|
|
|
|
template <typename T>
|
2020-03-02 10:49:41 +01:00
|
|
|
static int lrnFunctor_(sd::graph::Context& block, NDArray* input, NDArray* output, int depth, float bias, float alpha, float beta) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j_debug("MKL-DNN is not used for lrn!\n", 0);
|
|
|
|
|
|
|
|
const int rank = input->rankOf();
|
|
|
|
|
2020-06-06 14:26:55 +02:00
|
|
|
TadPack inTadPack = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), {rank - 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
TadPack outTadPack;
|
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
if(shape::haveSameShapeAndStrides(input->shapeInfo(), output->shapeInfo()))
|
2019-06-06 14:21:15 +02:00
|
|
|
outTadPack = inTadPack;
|
|
|
|
else
|
2020-06-06 14:26:55 +02:00
|
|
|
outTadPack = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), {rank - 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
const Nd4jLong numOfTads = inTadPack.numberOfTads();
|
|
|
|
const Nd4jLong tadLen = input->sizeAt(-1);
|
|
|
|
|
|
|
|
const Nd4jLong* inTadOffsets = inTadPack.primaryOffsets();
|
|
|
|
const Nd4jLong* outTadOffsets = outTadPack.primaryOffsets();
|
|
|
|
|
|
|
|
const Nd4jLong inTadEws = shape::elementWiseStride(inTadPack.primaryShapeInfo());
|
|
|
|
const Nd4jLong outTadEws = shape::elementWiseStride(outTadPack.primaryShapeInfo());
|
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
const T* inBuff = reinterpret_cast<T*>(input->buffer());
|
|
|
|
T* outBuff = reinterpret_cast<T*>(output->buffer());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
const T tbias = static_cast<T>(bias);
|
|
|
|
const T tbeta = static_cast<T>(beta);
|
|
|
|
const T talpha = static_cast<T>(alpha);
|
|
|
|
|
|
|
|
if(inTadEws == 1 && outTadEws == 1) {
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
2020-02-26 19:12:19 +01:00
|
|
|
for (auto i = start; i < stop; i++) {
|
2019-11-13 15:15:18 +01:00
|
|
|
const T *x = inBuff + inTadOffsets[i];
|
|
|
|
T *y = outBuff + outTadOffsets[i];
|
|
|
|
|
|
|
|
T prev = 0;
|
|
|
|
|
|
|
|
// calculate squared sum of elements per each j-th element range [j - depth, j + depth + 1]
|
|
|
|
// we store each squared sum in corresponding element of y array
|
2020-02-26 19:12:19 +01:00
|
|
|
for (Nd4jLong j = 0; j < tadLen; ++j) {
|
2020-03-02 10:49:41 +01:00
|
|
|
const uint begin = sd::math::nd4j_max<int>(0, j - depth);
|
2019-11-13 15:15:18 +01:00
|
|
|
const uint last = depth + j + 1;
|
2020-03-02 10:49:41 +01:00
|
|
|
const uint end = sd::math::nd4j_min<int>(last, tadLen);
|
2019-11-13 15:15:18 +01:00
|
|
|
|
|
|
|
if (j == 0) {
|
|
|
|
for (uint s = begin; s < end; ++s)
|
|
|
|
prev = prev + x[s] * x[s];
|
|
|
|
y[j] = prev;
|
|
|
|
} else if (begin == 0 && last <= tadLen)
|
|
|
|
y[j] = prev + x[end - 1] * x[end - 1];
|
|
|
|
else if (begin > 0 && last <= tadLen)
|
|
|
|
y[j] = prev + x[end - 1] * x[end - 1] - x[begin - 1] * x[begin - 1];
|
|
|
|
else if (begin > 0 && last > tadLen)
|
|
|
|
y[j] = prev - x[begin - 1] * x[begin - 1];
|
|
|
|
else
|
|
|
|
y[j] = prev;
|
|
|
|
|
|
|
|
if (j != 0)
|
|
|
|
prev = y[j];
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
y[j] = x[j] / sd::math::nd4j_pow<T, T, T>(tbias + alpha * prev, tbeta);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2020-03-09 06:22:49 +01:00
|
|
|
samediff::Threads::parallel_tad(func, 0, numOfTads);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
else {
|
2019-11-13 15:15:18 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
2020-02-26 19:12:19 +01:00
|
|
|
for (Nd4jLong i = 0; i < numOfTads; ++i) {
|
2019-11-13 15:15:18 +01:00
|
|
|
const T *x = inBuff + inTadOffsets[i];
|
|
|
|
T *y = outBuff + outTadOffsets[i];
|
|
|
|
|
|
|
|
T prev = 0;
|
|
|
|
|
|
|
|
// calculate squared sum of elements per each j-th element range [j - depth, j + depth + 1]
|
|
|
|
// we store each squared sum in corresponding element of y array
|
2020-02-26 19:12:19 +01:00
|
|
|
for (Nd4jLong j = 0; j < tadLen; ++j) {
|
2020-03-02 10:49:41 +01:00
|
|
|
const uint begin = sd::math::nd4j_max<int>(0, j - depth);
|
2019-11-13 15:15:18 +01:00
|
|
|
const uint last = depth + j + 1;
|
2020-03-02 10:49:41 +01:00
|
|
|
const uint end = sd::math::nd4j_min<int>(last, tadLen);
|
2019-11-13 15:15:18 +01:00
|
|
|
|
|
|
|
if (j == 0) {
|
|
|
|
for (uint s = begin; s < end; ++s)
|
|
|
|
prev = prev + x[s * inTadEws] * x[s * inTadEws];
|
|
|
|
y[j * outTadEws] = prev;
|
|
|
|
} else if (begin == 0 && last <= tadLen)
|
|
|
|
y[j * outTadEws] = prev + x[(end - 1) * inTadEws] * x[(end - 1) * inTadEws];
|
|
|
|
else if (begin > 0 && last <= tadLen)
|
|
|
|
y[j * outTadEws] = prev + x[(end - 1) * inTadEws] * x[(end - 1) * inTadEws] - x[(begin - 1) * inTadEws] * x[(begin - 1) * inTadEws];
|
|
|
|
else if (begin > 0 && last > tadLen)
|
|
|
|
y[j * outTadEws] = prev - x[(begin - 1) * inTadEws] * x[(begin - 1) * inTadEws];
|
|
|
|
else
|
|
|
|
y[j * outTadEws] = prev;
|
|
|
|
|
|
|
|
if (j != 0)
|
|
|
|
prev = y[j * outTadEws];
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
y[j * outTadEws] = x[j * inTadEws] / sd::math::nd4j_pow<T, T, T>(tbias + alpha * prev, tbeta);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2020-03-09 06:22:49 +01:00
|
|
|
samediff::Threads::parallel_tad(func, 0, numOfTads);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
return Status::OK();
|
|
|
|
}
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
BUILD_SINGLE_TEMPLATE(template int lrnFunctor_, (sd::graph::Context& block, NDArray* input, NDArray* output, int depth, float bias, float alpha, float beta), FLOAT_TYPES);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
int lrnFunctor(sd::graph::Context& block, NDArray* input, NDArray* output, int depth, double bias, double alpha, double beta) {
|
2019-06-06 14:21:15 +02:00
|
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), return lrnFunctor_, (block, input, output, depth, bias, alpha, beta), FLOAT_TYPES);
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Y>
|
|
|
|
static void lrnBP_(const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta) {
|
|
|
|
|
|
|
|
const int rank = input.rankOf();
|
|
|
|
|
2020-06-06 14:26:55 +02:00
|
|
|
TadPack inTadPack = sd::ConstantTadHelper::getInstance().tadForDimensions(input.shapeInfo(), {rank - 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
TadPack gradITadPack;
|
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
if(shape::haveSameShapeAndStrides(input.shapeInfo(), gradI.shapeInfo()))
|
2019-06-06 14:21:15 +02:00
|
|
|
gradITadPack = inTadPack;
|
|
|
|
else
|
2020-06-06 14:26:55 +02:00
|
|
|
gradITadPack = sd::ConstantTadHelper::getInstance().tadForDimensions(gradI.shapeInfo(), {rank - 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
const Nd4jLong numOfTads = inTadPack.numberOfTads();
|
|
|
|
const Nd4jLong tadLen = input.sizeAt(-1);
|
|
|
|
|
|
|
|
const Nd4jLong* inTadOffsets = inTadPack.primaryOffsets();
|
|
|
|
const Nd4jLong* gradITadOffsets = gradITadPack.primaryOffsets();
|
|
|
|
|
|
|
|
const Nd4jLong inTadEws = shape::elementWiseStride(inTadPack.primaryShapeInfo());
|
|
|
|
const Nd4jLong gradITadEws = shape::elementWiseStride(gradITadPack.primaryShapeInfo());
|
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
const X* inBuff = reinterpret_cast<X const*>(input.buffer());
|
|
|
|
Y* gradIBuff = reinterpret_cast<Y*>(gradI.buffer());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
const Y tbias = static_cast<Y>(bias);
|
|
|
|
const Y tbeta = static_cast<Y>(beta);
|
|
|
|
const Y talpha = static_cast<Y>(alpha);
|
|
|
|
const Y coeff = talpha * tbeta;
|
|
|
|
|
|
|
|
if(inTadEws == 1 && gradITadEws == 1) {
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
2020-02-26 19:12:19 +01:00
|
|
|
for (auto i = start; i < stop; i++) {
|
2019-11-13 15:15:18 +01:00
|
|
|
const X *x = inBuff + inTadOffsets[i];
|
|
|
|
Y *y = gradIBuff + gradITadOffsets[i];
|
|
|
|
|
|
|
|
// this loop calculates squared sum of elements per each j-th element range [j - depth, j + depth + 1]
|
|
|
|
// we store each squared sum in corresponding element of y array
|
2020-02-26 19:12:19 +01:00
|
|
|
for (Nd4jLong j = 0; j < tadLen; ++j) {
|
2020-03-02 10:49:41 +01:00
|
|
|
const uint begin = sd::math::nd4j_max<int>(0, j - depth);
|
2019-11-13 15:15:18 +01:00
|
|
|
const uint last = depth + j + 1;
|
2020-03-02 10:49:41 +01:00
|
|
|
const uint end = sd::math::nd4j_min<int>(last, tadLen);
|
2019-11-13 15:15:18 +01:00
|
|
|
|
|
|
|
if (j == 0) {
|
|
|
|
y[0] = 0;
|
|
|
|
for (uint s = begin; s < end; ++s)
|
|
|
|
y[0] = y[0] + x[s] * x[s];
|
|
|
|
} else if (begin == 0 && last <= tadLen)
|
|
|
|
y[j] = y[j - 1] + x[end - 1] * x[end - 1];
|
|
|
|
else if (begin > 0 && last <= tadLen)
|
|
|
|
y[j] = y[j - 1] + x[end - 1] * x[end - 1] - x[begin - 1] * x[begin - 1];
|
|
|
|
else if (begin > 0 && last > tadLen)
|
|
|
|
y[j] = y[j - 1] - x[begin - 1] * x[begin - 1];
|
|
|
|
else
|
|
|
|
y[j] = y[j - 1];
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
Y *factor = new Y[tadLen];
|
|
|
|
|
|
|
|
Y prev = 0;
|
|
|
|
// second loop calculates derivatives using information gained in first loop above
|
2020-02-26 19:12:19 +01:00
|
|
|
for (Nd4jLong j = 0; j < tadLen; ++j) {
|
2020-03-02 10:49:41 +01:00
|
|
|
const uint begin = sd::math::nd4j_max<int>(0, j - depth);
|
2019-11-13 15:15:18 +01:00
|
|
|
const uint last = depth + j + 1;
|
2020-03-02 10:49:41 +01:00
|
|
|
const uint end = sd::math::nd4j_min<int>(last, tadLen);
|
2019-11-13 15:15:18 +01:00
|
|
|
|
|
|
|
Y init = tbias + talpha * y[j];
|
|
|
|
|
|
|
|
if (j == 0) {
|
|
|
|
for (uint s = begin; s < end; ++s) {
|
2020-03-02 10:49:41 +01:00
|
|
|
factor[s] = sd::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[s], -tbeta - 1);
|
2019-11-13 15:15:18 +01:00
|
|
|
prev = prev + x[s] * factor[s];
|
|
|
|
}
|
|
|
|
y[0] = prev;
|
|
|
|
} else if (begin == 0 && last <= tadLen) {
|
2020-03-02 10:49:41 +01:00
|
|
|
factor[end - 1] = sd::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[end - 1], -tbeta - 1);
|
2019-11-13 15:15:18 +01:00
|
|
|
y[j] = prev + x[end - 1] * factor[end - 1];
|
|
|
|
} else if (begin > 0 && last <= tadLen) {
|
2020-03-02 10:49:41 +01:00
|
|
|
factor[end - 1] = sd::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[end - 1], -tbeta - 1);
|
2019-11-13 15:15:18 +01:00
|
|
|
y[j] = prev + x[end - 1] * factor[end - 1] - x[begin - 1] * factor[begin - 1];
|
|
|
|
} else if (begin > 0 && last > tadLen)
|
|
|
|
y[j] = prev - x[begin - 1] * factor[begin - 1];
|
|
|
|
else
|
|
|
|
y[j] = prev;
|
|
|
|
|
|
|
|
if (j != 0)
|
|
|
|
prev = y[j];
|
|
|
|
|
|
|
|
y[j] = factor[j] * init - 2 * x[j] * coeff * prev;
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
|
|
|
|
delete[]factor;
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
};
|
|
|
|
|
2020-03-09 06:22:49 +01:00
|
|
|
samediff::Threads::parallel_tad(func, 0, numOfTads);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
else {
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
2020-02-26 19:12:19 +01:00
|
|
|
for (auto i = start; i < stop; i++) {
|
2019-11-13 15:15:18 +01:00
|
|
|
const X *x = inBuff + inTadOffsets[i];
|
|
|
|
Y *y = gradIBuff + gradITadOffsets[i];
|
|
|
|
|
|
|
|
// this loop calculates squared sum of elements per each j-th element range [j - depth, j + depth + 1]
|
|
|
|
// we store each squared sum in corresponding element of y array
|
2020-02-26 19:12:19 +01:00
|
|
|
for (Nd4jLong j = 0; j < tadLen; ++j) {
|
2020-03-02 10:49:41 +01:00
|
|
|
const uint begin = sd::math::nd4j_max<int>(0, j - depth);
|
2019-11-13 15:15:18 +01:00
|
|
|
const uint last = depth + j + 1;
|
2020-03-02 10:49:41 +01:00
|
|
|
const uint end = sd::math::nd4j_min<int>(last, tadLen);
|
2019-11-13 15:15:18 +01:00
|
|
|
|
|
|
|
if (j == 0) {
|
|
|
|
y[0] = 0;
|
|
|
|
for (uint s = begin; s < end; ++s)
|
|
|
|
y[0] = y[0] + x[s * inTadEws] * x[s * inTadEws];
|
|
|
|
} else if (begin == 0 && last <= tadLen)
|
|
|
|
y[j * gradITadEws] =
|
|
|
|
y[(j - 1) * gradITadEws] + x[(end - 1) * inTadEws] * x[(end - 1) * inTadEws];
|
|
|
|
else if (begin > 0 && last <= tadLen)
|
|
|
|
y[j * gradITadEws] =
|
|
|
|
y[(j - 1) * gradITadEws] + x[(end - 1) * inTadEws] * x[(end - 1) * inTadEws] -
|
|
|
|
x[(begin - 1) * inTadEws] * x[(begin - 1) * inTadEws];
|
|
|
|
else if (begin > 0 && last > tadLen)
|
|
|
|
y[j * gradITadEws] =
|
|
|
|
y[(j - 1) * gradITadEws] - x[(begin - 1) * inTadEws] * x[(begin - 1) * inTadEws];
|
|
|
|
else
|
|
|
|
y[j * gradITadEws] = y[(j - 1) * gradITadEws];
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
Y *factor = new Y[tadLen];
|
|
|
|
|
|
|
|
Y prev = 0;
|
|
|
|
// second loop calculates derivatives using information gained in first loop above
|
2020-02-26 19:12:19 +01:00
|
|
|
for (Nd4jLong j = 0; j < tadLen; ++j) {
|
2020-03-02 10:49:41 +01:00
|
|
|
const uint begin = sd::math::nd4j_max<int>(0, j - depth);
|
2019-11-13 15:15:18 +01:00
|
|
|
const uint last = depth + j + 1;
|
2020-03-02 10:49:41 +01:00
|
|
|
const uint end = sd::math::nd4j_min<int>(last, tadLen);
|
2019-11-13 15:15:18 +01:00
|
|
|
|
|
|
|
Y init = tbias + talpha * y[j * gradITadEws];
|
|
|
|
|
|
|
|
if (j == 0) {
|
|
|
|
for (uint s = begin; s < end; ++s) {
|
2020-03-02 10:49:41 +01:00
|
|
|
factor[s] = sd::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[s * gradITadEws], -tbeta - 1);
|
2019-11-13 15:15:18 +01:00
|
|
|
prev = prev + x[s * inTadEws] * factor[s];
|
|
|
|
}
|
|
|
|
y[0] = prev;
|
|
|
|
} else if (begin == 0 && last <= tadLen) {
|
2020-03-02 10:49:41 +01:00
|
|
|
factor[end - 1] = sd::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[(end - 1) * gradITadEws],
|
2019-11-13 15:15:18 +01:00
|
|
|
-tbeta - 1);
|
|
|
|
y[j * gradITadEws] = prev + x[(end - 1) * inTadEws] * factor[end - 1];
|
|
|
|
} else if (begin > 0 && last <= tadLen) {
|
2020-03-02 10:49:41 +01:00
|
|
|
factor[end - 1] = sd::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[(end - 1) * gradITadEws],
|
2019-11-13 15:15:18 +01:00
|
|
|
-tbeta - 1);
|
|
|
|
y[j * gradITadEws] = prev + x[(end - 1) * inTadEws] * factor[end - 1] -
|
|
|
|
x[(begin - 1) * inTadEws] * factor[begin - 1];
|
|
|
|
} else if (begin > 0 && last > tadLen)
|
|
|
|
y[j * gradITadEws] = prev - x[(begin - 1) * inTadEws] * factor[begin - 1];
|
|
|
|
else
|
|
|
|
y[j * gradITadEws] = prev;
|
|
|
|
|
|
|
|
if (j != 0)
|
|
|
|
prev = y[j * gradITadEws];
|
|
|
|
|
|
|
|
y[j * gradITadEws] = factor[j] * init - 2 * x[j * inTadEws] * coeff * prev;
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
|
|
|
|
delete[]factor;
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
};
|
|
|
|
|
2020-03-09 06:22:49 +01:00
|
|
|
samediff::Threads::parallel_tad(func, 0, numOfTads);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
gradI *= gradO;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
void lrnBP(sd::graph::Context& block, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta) {
|
[WIP] multi-device support (#80)
* fix pad javadoc and @see links. (#72)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* [WIP] More fixes (#73)
* special tests for ConstantTadHelper/ConstantShapeHelper
Signed-off-by: raver119 <raver119@gmail.com>
* release methods for data buffers
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary buffer Java side
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary buffer Java side
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary TadPack C++/Java side (#74)
Signed-off-by: raver119 <raver119@gmail.com>
* Zoo model TF import test updates (#75)
* argLine fix, update compression_gru comment
* updated comment for xception
* undid but commented argLine change
* updated xlnet comment
* copyright headers
* - new NDArray methods like()/ulike() (#77)
- fix for depthwise_conv2d_bp + special test
Signed-off-by: raver119 <raver119@gmail.com>
* upsampling2d fix CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* DL4J trace logging (#79)
* MLN/CG trace logging for debugging
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tiny tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* strided_slice_bp shape fn leak fix
Signed-off-by: raver119 <raver119@gmail.com>
* SameDiff fixes and naming (#78)
* remove SDVariable inplace methods
* import methods
* npe fix in OpVal
* removed SameDiff inplace ops from tests
* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything
* quick fixes
* javadoc
* SDVariable eval with placeholders
* use regex match
* better matching
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* fix javadoc. (#76)
* fix javadoc.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* replace most @see with @link s.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* 4 additional tests
Signed-off-by: raver119 <raver119@gmail.com>
* launch context reorganization
Signed-off-by: raver119 <raver119@gmail.com>
* LaunchContext reorganization
Signed-off-by: raver119 <raver119@gmail.com>
* per-device LaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* Various DL4J/ND4J fixes (#81)
* #7954 Force refresh of UI when switching tabs on overview page
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8017 Concurrent modification exception (synchronize) fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8033 Don't initialize updater in middle of writing memory crash dump
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8208 Fix shape checks for ND4J int[] creator methods
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #6385 #7992 Keras import naming fixes + cleanup
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8016 Upsampling3D - add NDHWC format support
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* Refactor NativeOps.h to export C functions
* Actually export functions from NativeOps.h
* Adapt the Java wrappers in ND4J generated with JavaCPP
* Create C wrappers for some of the C++ classes currently used by ND4J
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* remove duplicate code in createBufferDetached. (#83)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Keras model import - updater lr fix (#84)
* Keras model import - updater lr fix
Signed-off-by: eraly <susan.eraly@gmail.com>
* Keras model import - updater lr fix, cleanup
Signed-off-by: eraly <susan.eraly@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* Fix functions of OpaqueVariablesSet
* thread-local buffers/affinity
Signed-off-by: raver119 <raver119@gmail.com>
* thread safety for LaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* more of thread safety
Signed-off-by: raver119 <raver119@gmail.com>
* one more multi threaded test
Signed-off-by: raver119 <raver119@gmail.com>
* SameDiff Convolution Config validation, better output methods (#82)
* Conv Config validation & tests
Signed-off-by: Ryan Nett <rnett@skymind.io>
* stackOutputs utility method
Signed-off-by: Ryan Nett <rnett@skymind.io>
* use constructor for validation, support negative kernel sizes (infered from weights)
Signed-off-by: Ryan Nett <rnett@skymind.io>
* better output methods
Signed-off-by: Ryan Nett <rnett@skymind.io>
* move output to be with fit and evaluate
Signed-off-by: Ryan Nett <rnett@skymind.io>
* fixes
Signed-off-by: Ryan Nett <rnett@skymind.io>
* more fixes
Signed-off-by: Ryan Nett <rnett@skymind.io>
* refactor duplicate code from pad methods. (#86)
* refactor duplicate code from pad methods.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* replace switch with if.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Various ND4J/DL4J fixes and improvements (#87)
* Reshape and reallocate - small fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Reshape and reallocate - small fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #6488 ElementWiseVertex broadcast support
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Constructors and broadcast supported it Transforms.max/min
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8054 ElementWiseVertex now supports broadcast inputs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8057 Nd4j.create overload dtype fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7551 ND4J Shape validation fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Numpy boolean import (#91)
* numpy bool type
Signed-off-by: raver119 <raver119@gmail.com>
* numpy bool java side
Signed-off-by: raver119 <raver119@gmail.com>
* remove create method with unused parameter. (#89)
* remove create method with unused parameter.
* removed more unused methods.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* removing more unused code.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* last removal of unused code.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* remove createSparse methods. (#92)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Various ND4J/DL4J fixes (#90)
* Deprecate Old*Op instances
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8063 #8054 Broadcast exceptions + cleanup inplace ops
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Remove bad test condition
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7993 Fix shape function issue in crop_and_resize op
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* DL4J SameDiff lambda layer fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8029 Fix for pnorm backprop math
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* createUninitializedDetached refactoring. (#94)
* wip
* update interface, add null implementations.
* Breaking one test in a weird way.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* createUninitializedDetached refactored.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* cuda build fix for issues introduced by recent refactoring
Signed-off-by: raver119 <raver119@gmail.com>
* [WIP] More of CUDA (#95)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* Implementation of hashcode cuda helper. Working edition.
* Fixed parallel test input arangements.
* Fixed tests for hashcode op.
* Fixed shape calculation for image:crop_and_resize op and test.
* NativeOps tests. Initial test suite.
* Added tests for indexReduce methods.
* Added test on execBroadcast with NDArray as dimensions.
* Added test on execBroadcastBool with NDArray as dimensions.
* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.
* Added tests for execReduce with scalar results.
* Added reduce tests for non-empty dims array.
* Added tests for reduce3.
* Added tests for execScalar.
* Added tests for execSummaryStats.
* - provide cpu/cuda code for batch_to_space
- testing it
Signed-off-by: Yurii <yurii@skymind.io>
* - remove old test for batch_to_space (had wrong format and numbers were not checked)
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed complilation errors with test.
* Added test for execTransformFloat.
* Added test for execTransformSame.
* Added test for execTransformBool.
* Added test for execTransformStrict.
* Added tests for execScalar/execScalarBool with TADs.
* Added test for flatten.
* - provide cpu/cuda code for space_to_Batch operaion
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for concat.
* comment unnecessary stuff in s_t_b
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for specialConcat.
* Added tests for memcpy/set routines.
* Fixed pullRow cuda test.
* Added pullRow test.
* Added average test.
* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)
Signed-off-by: Yurii <yurii@skymind.io>
* - debugging and fixing cuda tests in JavaInteropTests file
Signed-off-by: Yurii <yurii@skymind.io>
* - correct some tests
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for shuffle.
* Fixed ops declarations.
* Restored omp and added shuffle test.
* Added convertTypes test.
* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.
* Added sort tests.
* Added tests for execCustomOp.
* - further debuging and fixing tests terminated with crash
Signed-off-by: Yurii <yurii@skymind.io>
* Added tests for calculateOutputShapes.
* Addded Benchmarks test.
* Commented benchmark tests.
* change assertion
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for apply_sgd op. Added cpu helper for that op.
* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.
* Added test for assign broadcastable.
* Added tests for assign_bp op.
* Added tests for axpy op.
* - assign/execScalar/execTransformAny signature change
- minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed axpy op.
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* - fix tests for nativeOps::concat
Signed-off-by: Yurii <yurii@skymind.io>
* sequential transform/scalar
Signed-off-by: raver119 <raver119@gmail.com>
* allow nested parallelism
Signed-off-by: raver119 <raver119@gmail.com>
* assign_bp leak fix
Signed-off-by: raver119 <raver119@gmail.com>
* block setRNG fix
Signed-off-by: raver119 <raver119@gmail.com>
* enable parallelism by default
Signed-off-by: raver119 <raver119@gmail.com>
* enable nested parallelism by default
Signed-off-by: raver119 <raver119@gmail.com>
* Added cuda implementation for row_count helper.
* Added implementation for tnse gains op helper.
* - take into account possible situations when input arrays are empty in reduce_ cuda stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.
* Added kernel for tsne/symmetrized op heleper.
* Implementation of tsne/symmetrized op cuda helper. Working edition.
* Eliminated waste printfs.
* Added test for broadcastgradientargs op.
* host-only fallback for empty reduce float
Signed-off-by: raver119 <raver119@gmail.com>
* - some tests fixes
Signed-off-by: Yurii <yurii@skymind.io>
* - correct the rest of reduce_ stuff
Signed-off-by: Yurii <yurii@skymind.io>
* - further correction of reduce_ stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for Cbow op. Also added cuda implementation for cbow helpers.
* - improve code of stack operation for scalar case
Signed-off-by: Yurii <yurii@skymind.io>
* - provide cuda kernel for gatherND operation
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of cbow helpers with cuda kernels.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* - further correction of cuda stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Implementatation of cbow op helper with cuda kernels. Working edition.
* Skip random testing for cudablas case.
* lstmBlockCell context fix
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for ELU and ELU_BP ops.
* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.
* Added tests for neq_scalar.
* Added test for noop.
* - further work on clipbynorm_bp
Signed-off-by: Yurii <yurii@skymind.io>
* - get rid of concat op call, use instead direct concat helper call
Signed-off-by: Yurii <yurii@skymind.io>
* lstmBlockCell context fix
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for lrelu and lrelu_bp.
* Added tests for selu and selu_bp.
* Fixed lrelu derivative helpers.
* - some corrections in lstm
Signed-off-by: Yurii <yurii@skymind.io>
* operator * result shape fix
Signed-off-by: raver119 <raver119@gmail.com>
* - correct typo in lstmCell
Signed-off-by: Yurii <yurii@skymind.io>
* few tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA inverse broadcast bool fix
Signed-off-by: raver119 <raver119@gmail.com>
* disable MMAP test for CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* BooleanOp syncToDevice
Signed-off-by: raver119 <raver119@gmail.com>
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* additional data types for im2col/col2im
Signed-off-by: raver119 <raver119@gmail.com>
* Added test for firas_sparse op.
* one more RandomBuffer test excluded
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for flatten op.
* Added test for Floor op.
* bunch of tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* mmulDot tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Implemented floordiv_bp op and tests.
* Fixed scalar case with cuda implementation for bds.
* - work on cuda kernel for clip_by_norm backprop op is completed
Signed-off-by: Yurii <yurii@skymind.io>
* Eliminate cbow crach.
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminated abortion with batched nlp test.
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed shared flag initializing.
* disabled bunch of cpu workspaces tests
Signed-off-by: raver119 <raver119@gmail.com>
* scalar operators fix: missing registerSpecialUse call
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed logdet for cuda and tests.
* - correct clipBynorm_bp
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed crop_and_resize shape datatype.
* - correct some mmul tests
Signed-off-by: Yurii <yurii@skymind.io>
* build fix
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI (#97)
Signed-off-by: raver119 <raver119@gmail.com>
* temporary stack fix
Signed-off-by: raver119 <raver119@gmail.com>
* round robin affinity test
Signed-off-by: raver119 <raver119@gmail.com>
* get rid of legacy CudaContext methods
Signed-off-by: raver119 <raver119@gmail.com>
* get rid of legacy ContextPool classes/methods
Signed-off-by: raver119 <raver119@gmail.com>
* one legacy test removed
Signed-off-by: raver119 <raver119@gmail.com>
* few more fields rearranged
Signed-off-by: raver119 <raver119@gmail.com>
* OpaqueLaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* OpaqueLaunchContext++
Signed-off-by: raver119 <raver119@gmail.com>
* more of OpaqueLaunchContext methods
Signed-off-by: raver119 <raver119@gmail.com>
* LaunchContext -> CudaContext
Signed-off-by: raver119 <raver119@gmail.com>
* AffinityManger changes
Signed-off-by: raver119 <raver119@gmail.com>
* AffinityManger changes
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver handles
Signed-off-by: raver119 <raver119@gmail.com>
* typo
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver method
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver handle propagated
Signed-off-by: raver119 <raver119@gmail.com>
* blas/solver handles
Signed-off-by: raver119 <raver119@gmail.com>
* one more test
Signed-off-by: raver119 <raver119@gmail.com>
* legacy concat implementations replaced with new CustomOp
Signed-off-by: raver119 <raver119@gmail.com>
* one more test
Signed-off-by: raver119 <raver119@gmail.com>
* concat now uses way more blocks
Signed-off-by: raver119 <raver119@gmail.com>
* print
Signed-off-by: raver119 <raver119@gmail.com>
* no more triple template mmul
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of kernels have dtypes reconsidered
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of kernels have dtypes reconsidered
Signed-off-by: raver119 <raver119@gmail.com>
* bitonic sort reorganized
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of cpu stuff removed from cuda scope
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of cpu stuff removed from cuda scope
Signed-off-by: raver119 <raver119@gmail.com>
* type conversions moved to generic impl
Signed-off-by: raver119 <raver119@gmail.com>
* cpu data types pass
Signed-off-by: raver119 <raver119@gmail.com>
* non_max_suppression
Signed-off-by: raver119 <raver119@gmail.com>
* sortByValue fix
Signed-off-by: raver119 <raver119@gmail.com>
* ignore all mixed datatype tests for mmul
Signed-off-by: raver119 <raver119@gmail.com>
* special handling of OpProfiler exceptions
Signed-off-by: raver119 <raver119@gmail.com>
* - one failing concat test in cpp
- Nd4j.tile now uses op internally
Signed-off-by: raver119 <raver119@gmail.com>
* get back dtype exception for legacy arrays deserialization
Signed-off-by: raver119 <raver119@gmail.com>
2019-08-14 15:52:34 +02:00
|
|
|
BUILD_DOUBLE_SELECTOR(input.dataType(), gradO.dataType(), lrnBP_, (input, gradO, gradI, depth, bias, alpha, beta), FLOAT_TYPES, FLOAT_TYPES);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|