cavis/libnd4j/include/ops/declarable/helpers/cpu/lrn.cpp

422 lines
20 KiB
C++
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <ops/declarable/helpers/lrn.h>
#include <Status.h>
#include <ConstantTadHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
#ifdef HAVE_MKLDNN
using namespace mkldnn;
static void getMKLDNNMemoryDescLrn(const NDArray* src, const NDArray* diff_src, const NDArray* dst,
mkldnn::memory::desc* lrn_src_md, mkldnn::memory::desc* lrn_diff_src_md, mkldnn::memory::desc* lrn_dst_md,
mkldnn::memory::desc* user_src_md, mkldnn::memory::desc* user_diff_src_md, mkldnn::memory::desc* user_dst_md, int axis) {
const Nd4jLong* shape = src->getShapeInfo();
long rank = shape[0];
long dim1 = axis; // MKL-DNN supports only 1 axis, which has to be the "channel" one
long dim2 = axis >= 2 ? 1 : 2;
long dim3 = axis >= 3 ? 2 : 3;
mkldnn::memory::dims lrn_src_tz = { (int)shape[1], (int)shape[dim1 + 1], rank > 2 ? (int)shape[dim2 + 1] : 1, rank > 3 ? (int)shape[dim3 + 1] : 1};
auto type = mkldnn::memory::data_type::f32;
auto format = axis == 1 ? mkldnn::memory::format::nchw : mkldnn::memory::format::nhwc;
auto supposed_to_be_any_format = format; // doesn't work with "any"
if (src != nullptr && src->getBuffer() != nullptr && lrn_src_md != nullptr) {
*lrn_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format);
*user_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, format);
user_src_md->data.format = mkldnn_blocked;
user_src_md->data.layout_desc.blocking.strides[0][0] = src->stridesOf()[0];
user_src_md->data.layout_desc.blocking.strides[0][1] = src->stridesOf()[dim1];
user_src_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? src->stridesOf()[dim2] : 1;
user_src_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? src->stridesOf()[dim3] : 1;
}
if (diff_src != nullptr && diff_src->getBuffer() != nullptr && lrn_diff_src_md != nullptr) {
*lrn_diff_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format);
*user_diff_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, format);
user_diff_src_md->data.format = mkldnn_blocked;
user_diff_src_md->data.layout_desc.blocking.strides[0][0] = diff_src->stridesOf()[0];
user_diff_src_md->data.layout_desc.blocking.strides[0][1] = diff_src->stridesOf()[dim1];
user_diff_src_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? diff_src->stridesOf()[dim2] : 1;
user_diff_src_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? diff_src->stridesOf()[dim3] : 1;
}
if (dst != nullptr && dst->getBuffer() != nullptr && lrn_dst_md != nullptr) {
*lrn_dst_md = mkldnn::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format);
*user_dst_md = mkldnn::memory::desc({ lrn_src_tz }, type, format);
user_dst_md->data.format = mkldnn_blocked;
user_dst_md->data.layout_desc.blocking.strides[0][0] = dst->stridesOf()[0];
user_dst_md->data.layout_desc.blocking.strides[0][1] = dst->stridesOf()[dim1];
user_dst_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? dst->stridesOf()[dim2] : 1;
user_dst_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? dst->stridesOf()[dim3] : 1;
}
}
#endif
template <typename T>
static int lrnFunctor_(nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, float bias, float alpha, float beta) {
#ifdef HAVE_MKLDNN
if (block.isUseMKLDNN() && nd4j::MKLDNNStream::isSupported({input, output})) {
std::vector<nd4j::MKLDNNStream>& streams = block.getMKLDNNStreams();
if (streams.empty()) {
streams.push_back(MKLDNNStream("lrn"));
}
if (streams[0].checkAndReset({input}, {output}, {(float)bias, (float)alpha, (float)beta}, {depth})) {
mkldnn_memory_desc_t empty;
mkldnn::memory::desc lrn_src_md(empty), lrn_dst_md(empty), user_src_md(empty), user_dst_md(empty);
getMKLDNNMemoryDescLrn(input, nullptr, output, &lrn_src_md, nullptr, &lrn_dst_md, &user_src_md, nullptr, &user_dst_md, input->rankOf() - 1);
auto lrn_desc = lrn_forward::desc(prop_kind::forward_inference, lrn_across_channels, lrn_src_md, (2 * depth + 1), alpha * (2 * depth + 1), beta, bias);
auto engine = streams[0].getEngine();
auto lrn_prim_desc = lrn_forward::primitive_desc(lrn_desc, engine);
auto user_src_memory = mkldnn::memory({user_src_md, engine}, input->buffer());
auto user_dst_memory = mkldnn::memory({user_dst_md, engine}, output->buffer());
auto lrn_src_memory = user_src_memory;
streams[0].addMemory(user_src_memory);
if (mkldnn::memory::primitive_desc(lrn_prim_desc.src_primitive_desc())
!= user_src_memory.get_primitive_desc()) {
lrn_src_memory = mkldnn::memory(lrn_prim_desc.src_primitive_desc());
streams[0].addMemory(lrn_src_memory);
streams[0].addOperation(reorder(user_src_memory, lrn_src_memory));
}
auto lrn_dst_memory = user_dst_memory;
streams[0].addMemory(user_dst_memory);
if (mkldnn::memory::primitive_desc(lrn_prim_desc.dst_primitive_desc())
!= user_dst_memory.get_primitive_desc()) {
lrn_dst_memory = mkldnn::memory(lrn_prim_desc.dst_primitive_desc());
streams[0].addMemory(lrn_dst_memory);
}
streams[0].addOperation(lrn_forward(lrn_prim_desc, lrn_src_memory, lrn_dst_memory));
if (mkldnn::memory::primitive_desc(lrn_prim_desc.dst_primitive_desc())
!= user_dst_memory.get_primitive_desc()) {
streams[0].addOperation(reorder(lrn_dst_memory, user_dst_memory));
}
}
streams[0].submitAndWait();
return ND4J_STATUS_OK;
}
#endif
nd4j_debug("MKL-DNN is not used for lrn!\n", 0);
const int rank = input->rankOf();
TadPack inTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {rank - 1});
TadPack outTadPack;
if(shape::haveSameShapeAndStrides(input->getShapeInfo(), output->getShapeInfo()))
outTadPack = inTadPack;
else
outTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {rank - 1});
const Nd4jLong numOfTads = inTadPack.numberOfTads();
const Nd4jLong tadLen = input->sizeAt(-1);
const Nd4jLong* inTadOffsets = inTadPack.primaryOffsets();
const Nd4jLong* outTadOffsets = outTadPack.primaryOffsets();
const Nd4jLong inTadEws = shape::elementWiseStride(inTadPack.primaryShapeInfo());
const Nd4jLong outTadEws = shape::elementWiseStride(outTadPack.primaryShapeInfo());
const T* inBuff = reinterpret_cast<T*>(input->getBuffer());
T* outBuff = reinterpret_cast<T*>(output->getBuffer());
const T tbias = static_cast<T>(bias);
const T tbeta = static_cast<T>(beta);
const T talpha = static_cast<T>(alpha);
if(inTadEws == 1 && outTadEws == 1) {
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfTads; ++i) {
const T* x = inBuff + inTadOffsets[i];
T* y = outBuff + outTadOffsets[i];
T prev = 0;
// calculate squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
for (uint s = begin; s < end; ++s)
prev = prev + x[s] * x[s];
y[j] = prev;
}
else if (begin == 0 && last <= tadLen)
y[j] = prev + x[end - 1] * x[end - 1];
else if (begin > 0 && last <= tadLen)
y[j] = prev + x[end - 1] * x[end - 1] - x[begin - 1] * x[begin - 1];
else if (begin > 0 && last > tadLen)
y[j] = prev - x[begin - 1] * x[begin - 1];
else
y[j] = prev;
if(j != 0)
prev = y[j];
y[j] = x[j] / nd4j::math::nd4j_pow<T, T, T>(tbias + alpha * prev, tbeta);
}
}
}
else {
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfTads; ++i) {
const T* x = inBuff + inTadOffsets[i];
T* y = outBuff + outTadOffsets[i];
T prev = 0;
// calculate squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
for (uint s = begin; s < end; ++s)
prev = prev + x[s*inTadEws] * x[s*inTadEws];
y[j*outTadEws] = prev;
}
else if (begin == 0 && last <= tadLen)
y[j*outTadEws] = prev + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws];
else if (begin > 0 && last <= tadLen)
y[j*outTadEws] = prev + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws] - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws];
else if (begin > 0 && last > tadLen)
y[j*outTadEws] = prev - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws];
else
y[j*outTadEws] = prev;
if(j != 0)
prev = y[j*outTadEws];
y[j*outTadEws] = x[j*inTadEws] / nd4j::math::nd4j_pow<T, T, T>(tbias + alpha * prev, tbeta);
}
}
}
return Status::OK();
}
BUILD_SINGLE_TEMPLATE(template int lrnFunctor_, (nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, float bias, float alpha, float beta), FLOAT_TYPES);
int lrnFunctor(nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, double bias, double alpha, double beta) {
BUILD_SINGLE_SELECTOR(input->dataType(), return lrnFunctor_, (block, input, output, depth, bias, alpha, beta), FLOAT_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Y>
static void lrnBP_(const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta) {
const int rank = input.rankOf();
TadPack inTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), {rank - 1});
TadPack gradITadPack;
if(shape::haveSameShapeAndStrides(input.getShapeInfo(), gradI.getShapeInfo()))
gradITadPack = inTadPack;
else
gradITadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradI.getShapeInfo(), {rank - 1});
const Nd4jLong numOfTads = inTadPack.numberOfTads();
const Nd4jLong tadLen = input.sizeAt(-1);
const Nd4jLong* inTadOffsets = inTadPack.primaryOffsets();
const Nd4jLong* gradITadOffsets = gradITadPack.primaryOffsets();
const Nd4jLong inTadEws = shape::elementWiseStride(inTadPack.primaryShapeInfo());
const Nd4jLong gradITadEws = shape::elementWiseStride(gradITadPack.primaryShapeInfo());
const X* inBuff = reinterpret_cast<X*>(input.getBuffer());
Y* gradIBuff = reinterpret_cast<Y*>(gradI.getBuffer());
const Y tbias = static_cast<Y>(bias);
const Y tbeta = static_cast<Y>(beta);
const Y talpha = static_cast<Y>(alpha);
const Y coeff = talpha * tbeta;
if(inTadEws == 1 && gradITadEws == 1) {
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfTads; ++i) {
const X* x = inBuff + inTadOffsets[i];
Y* y = gradIBuff + gradITadOffsets[i];
// this loop calculates squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
y[0] = 0;
for (uint s = begin; s < end; ++s)
y[0] = y[0] + x[s] * x[s];
}
else if (begin == 0 && last <= tadLen)
y[j] = y[j - 1] + x[end - 1] * x[end - 1];
else if (begin > 0 && last <= tadLen)
y[j] = y[j - 1] + x[end - 1] * x[end - 1] - x[begin - 1] * x[begin - 1];
else if (begin > 0 && last > tadLen)
y[j] = y[j - 1] - x[begin - 1] * x[begin - 1];
else
y[j] = y[j - 1];
}
Y* factor = new Y[tadLen];
Y prev = 0;
// second loop calculates derivatives using information gained in first loop above
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
Y init = tbias + talpha * y[j];
if (j == 0) {
for (uint s = begin; s < end; ++s) {
factor[s] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[s], -tbeta - 1);
prev = prev + x[s] * factor[s];
}
y[0] = prev;
}
else if(begin == 0 && last <= tadLen) {
factor[end - 1] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[end - 1], -tbeta - 1);
y[j] = prev + x[end - 1] * factor[end - 1];
}
else if (begin > 0 && last <= tadLen) {
factor[end - 1] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[end - 1], -tbeta - 1);
y[j] = prev + x[end - 1] * factor[end - 1] - x[begin - 1] * factor[begin - 1];
}
else if (begin > 0 && last > tadLen)
y[j] = prev - x[begin - 1] * factor[begin - 1];
else
y[j] = prev;
if(j != 0)
prev = y[j];
y[j] = factor[j] * init - 2 * x[j] * coeff * prev;
}
delete []factor;
}
}
else {
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfTads; ++i) {
const X* x = inBuff + inTadOffsets[i];
Y* y = gradIBuff + gradITadOffsets[i];
// this loop calculates squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
y[0] = 0;
for (uint s = begin; s < end; ++s)
y[0] = y[0] + x[s*inTadEws] * x[s*inTadEws];
}
else if (begin == 0 && last <= tadLen)
y[j*gradITadEws] = y[(j - 1)*gradITadEws] + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws];
else if (begin > 0 && last <= tadLen)
y[j*gradITadEws] = y[(j - 1)*gradITadEws] + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws] - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws];
else if (begin > 0 && last > tadLen)
y[j*gradITadEws] = y[(j - 1)*gradITadEws] - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws];
else
y[j*gradITadEws] = y[(j - 1)*gradITadEws];
}
Y* factor = new Y[tadLen];
Y prev = 0;
// second loop calculates derivatives using information gained in first loop above
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
Y init = tbias + talpha * y[j*gradITadEws];
if (j == 0) {
for (uint s = begin; s < end; ++s) {
factor[s] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[s*gradITadEws], -tbeta - 1);
prev = prev + x[s*inTadEws] * factor[s];
}
y[0] = prev;
}
else if(begin == 0 && last <= tadLen) {
factor[end - 1] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[(end - 1)*gradITadEws], -tbeta - 1);
y[j*gradITadEws] = prev + x[(end - 1)*inTadEws] * factor[end - 1];
}
else if (begin > 0 && last <= tadLen) {
factor[end - 1] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[(end - 1)*gradITadEws], -tbeta - 1);
y[j*gradITadEws] = prev + x[(end - 1)*inTadEws] * factor[end - 1] - x[(begin - 1)*inTadEws] * factor[begin - 1];
}
else if (begin > 0 && last > tadLen)
y[j*gradITadEws] = prev - x[(begin - 1)*inTadEws] * factor[begin - 1];
else
y[j*gradITadEws] = prev;
if(j != 0)
prev = y[j*gradITadEws];
y[j*gradITadEws] = factor[j] * init - 2 * x[j*inTadEws] * coeff * prev;
}
delete []factor;
}
}
gradI *= gradO;
}
BUILD_DOUBLE_TEMPLATE(template void lrnBP_, (const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta), LIBND4J_TYPES, FLOAT_TYPES);
Merge master to upstream (#7945) * Shugeo strided slice zeros (#14) * Modified strided_slice op to properly work with empty-like shapes. * Fixed test for reduce_mean with empty-like input. * [WIP] Last merge (#15) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks * [WIP] Fixing outstanding issues for NLP (#9) * Avoid using not-inited objects * Test fixed. * Redundant method avoided for models like FastText * KMeans++ implementation * KMeans++ implementation * Disable parallel execution * KMeans++ * Tests * Dev branch merge (#16) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Fix some issues on master (#17) * Fix DataVec test issue * Fix issue with dl4j SameDiff output layer * Dtype fix for lambda layers * #7912 BertIterator dtype fix (use float32 not global default) * [WIP] Next set of CUDA stuff (#7) New CUDA implementations and improvements * bad file * Dev branch master merge (#23) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * SameDiff ops, TF import and fixes (#24) * CheckNumerics tests + fixes + misc fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fake quant Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * FakeQuantWithMinMaxArgs Signed-off-by: AlexDBlack <blacka101@gmail.com> * CheckNumerics fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Javadoc Signed-off-by: AlexDBlack <blacka101@gmail.com> * Exception tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for out of scope stack allocated var use Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignore for known failing test (already logged issue) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Merge upstream to fork (#25) * Add thousand-separator commas to TotalParams (#7915) * Add thousand-separator commas to TotalParams The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them. * Add thousand-separator commas to MultiLayerNetwork Corresponding change to MultiLayerNetwork Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com> * Update contributing and issue/PR templates (#7934) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix link to AdaDelta paper (#7942) Fix link to AdaDelta paper hosted on matthewzeiler.com Signed-off-by: Jxtps * Fixes, and ignores for known/logged failing issues (#7943) Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff + DL4J/SameDiff: Multiple fixes (#28) * #7919 HDF5 attribute buffer length fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7909 Arbiter constructor exception ux improvements Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7925 RNN output layer length checks Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Add listener for validating inputs are not incorrectly modified Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Integrate NonInplaceValidationListener into tests * #7844 DL4J SameDiff fixes for variable minibatch size * DL4J SameDiff fixes - ensure gradient for input placeholder is available Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweaks to ExternalErrorsFunction - use placeholders, make more robust * Another fix * More fixes * More SameDiff/DL4J fixes * Scope out scalar array creation in BaseScalarOp * Remove debug code Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Final dev branch merge (#29) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * [WIP] Multiple dataset iterators (#27) * Splitting dataset into arbitrary number * Fixes * Multiple split of iterator * Test * Test * Some fixes * signature change * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * one more test for sequential use of DataSetIteratorSplitter Signed-off-by: raver119 <raver119@gmail.com> * Fixes * Fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * couple of assertions tweaked Signed-off-by: raver119 <raver119@gmail.com> * MDS splitter test :/ Signed-off-by: raver119 <raver119@gmail.com> * Minor refactoring * Multi dataset * Some fixes * More tests * Small number of test fixes/improvements (failures on CI) (#31) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] More CUDA stuff (#26) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * LRN BP CUDA Signed-off-by: raver119 <raver119@gmail.com> * less memory Signed-off-by: raver119 <raver119@gmail.com> * Fixed bug with crop_and_resize op helper. * get rid of unnecessary index-calculation dunction Signed-off-by: Yurii <yurii@skymind.io> * Fixed sort with nth_element cuda-based helper. * Refactored nth_element. * Refactored nth_element op and tests. * Modified usage of dim array with sortTad routine. * Refactored main routine of helper for non_max_image_suppression op. * non_max_image_suppression op helper with cuda kernel implementation. Initial revision. * fix vol2col cuda kernel * meh Signed-off-by: raver119 <raver119@gmail.com> * topK concept Signed-off-by: raver119 <raver119@gmail.com> * unsorted topK with scanWitdh of 1 Signed-off-by: raver119 <raver119@gmail.com> * correct vol2col tests * sorted/unsorted topK Signed-off-by: raver119 <raver119@gmail.com> * implementation and fixing col2im/col2vol * Corrected usage flags with input/output with reverse op. * dup is const now Signed-off-by: raver119 <raver119@gmail.com> * percentile op Signed-off-by: raver119 <raver119@gmail.com> * group tests for mapool2d Signed-off-by: Yurii <yurii@skymind.io> * special test for george Signed-off-by: raver119 <raver119@gmail.com> * less threads for sortTad Signed-off-by: raver119 <raver119@gmail.com> * provide conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * remove auther in sort tad kernel code Signed-off-by: Yurii <yurii@skymind.io> * provide depthwise_conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * - max_pooling_with_argmax - null check for special use Signed-off-by: raver119 <raver119@gmail.com> * dts cuda Signed-off-by: raver119 <raver119@gmail.com> * provide sconv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * std cuda Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op to conform TF implementation. * Improved suppression helper. * provide pooling3d for cuda Signed-off-by: Yurii <yurii@skymind.io> * minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * more of minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * (bi)dynamic_rnn Signed-off-by: raver119 <raver119@gmail.com> * templates init order Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op. * Added cuda kernel for non_max_suppression. * CPU sort by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value tests Signed-off-by: raver119 <raver119@gmail.com> * Eliminate compiler error with cuda implementation. * - repaired gradCheck in cuda - provide conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * missed signature Signed-off-by: raver119 <raver119@gmail.com> * provide depthwise_conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * Implementation of lup helper with cuda kernel. Initial commit. * further work on backprops for convolutions Signed-off-by: Yurii <yurii@skymind.io> * CUDA linear sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * CUDA tad sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * start providing of backprop for pooling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * Added atomicAdd for bool datatype. * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition scalar CUDA Signed-off-by: raver119 <raver119@gmail.com> * important comment Signed-off-by: raver119 <raver119@gmail.com> * fix pooling2d/3d backprop helpers Signed-off-by: Yurii <yurii@skymind.io> * Added non-linear test with dynamic_partition. * Improved test for dynamic_partition. * dynamic_partition TAD concept Signed-off-by: raver119 <raver119@gmail.com> * - dynamic_partition TAD CUDA impl - dynamic_partition TAD CPU fix Signed-off-by: raver119 <raver119@gmail.com> * - rewrite cpu code for usampling2d/3d - write cuda code for usampling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * dynamic_stitch CUDA vector case Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case impl Signed-off-by: raver119 <raver119@gmail.com> * Added tests for dynamic_stitch 3D-4D cases. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * Fixed type check for dynamic stitch. * min/max bp Signed-off-by: raver119 <raver119@gmail.com> * rewrite code for upsampling2d/3d cpu Signed-off-by: Yurii <yurii@skymind.io> * reduce min/max/norm_max bp Signed-off-by: raver119 <raver119@gmail.com> * lup implementation. Additional enhancements. * provide code for upsamling2d/3d backprop Signed-off-by: Yurii <yurii@skymind.io> * weightedCrossEntropyWithLogits Signed-off-by: raver119 <raver119@gmail.com> * Fixed template math atomicMul for 64bit ints. * Refactored dynamic_partition_bp op. * inverseBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * DynamicPartitionBP test datatype fixed. * - nd4j_atomicMul Windows fix - cpu/NDArrayLambda.hpp excluded from CUDA Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
void lrnBP(nd4j::graph::Context& block, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta) {
2019-06-06 14:21:15 +02:00
BUILD_DOUBLE_SELECTOR(input.dataType(), gradO.dataType(), lrnBP_, (input, gradO, gradI, depth, bias, alpha, beta), LIBND4J_TYPES, FLOAT_TYPES);
}
}
}
}