cavis/libnd4j/include/ops/declarable/helpers/cuda/hsv_rgb.cu

139 lines
7.2 KiB
Plaintext
Raw Normal View History

/*******************************************************************************
* Copyright (c) 2019 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
#include <ops/declarable/helpers/color_models_conv.h>
#include <ops/declarable/helpers/adjust_hue.h>
#include <ops/declarable/helpers/adjust_saturation.h>
#include <helpers/ConstantTadHelper.h>
#include <PointersManager.h>
namespace nd4j {
namespace ops {
namespace helpers {
template <typename T>
static void _CUDA_G rgbToHsvCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets,
const Nd4jLong numOfTads, const int dimC) {
const T* x = reinterpret_cast<const T*>(vx);
T* z = reinterpret_cast<T*>(vz);
__shared__ int rank;
__shared__ Nd4jLong xDimCstride, zDimCstride;
if (threadIdx.x == 0) {
rank = shape::rank(xShapeInfo);
xDimCstride = shape::stride(xShapeInfo)[dimC];
zDimCstride = shape::stride(zShapeInfo)[dimC];
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) {
const T* xTad = x + xTadOffsets[i];
T* zTad = z + zTadOffsets[i];
rgbToHsv<T>(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
}
}
template <typename T>
static void _CUDA_G hsvToRgbCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets,
const Nd4jLong numOfTads, const int dimC) {
const T* x = reinterpret_cast<const T*>(vx);
T* z = reinterpret_cast<T*>(vz);
__shared__ int rank;
__shared__ Nd4jLong xDimCstride, zDimCstride;
if (threadIdx.x == 0) {
rank = shape::rank(xShapeInfo);
xDimCstride = shape::stride(xShapeInfo)[dimC];
zDimCstride = shape::stride(zShapeInfo)[dimC];
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) {
const T* xTad = x + xTadOffsets[i];
T* zTad = z + zTadOffsets[i];
hsvToRgb<T>(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
}
}
///////////////////////////////////////////////////////////////////
template<typename T>
static _CUDA_H void hsvToRgbCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream,
const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets,
const Nd4jLong numOfTads, const int dimC) {
hsvToRgbCuda<T><<<blocksPerGrid, threadsPerBlock, 256, *stream>>>(vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, dimC);
}
template<typename T>
static _CUDA_H void rgbToHsvCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream,
const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets,
const Nd4jLong numOfTads, const int dimC) {
rgbToHsvCuda<T><<<blocksPerGrid, threadsPerBlock, 256, *stream>>>(vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, dimC);
}
void transform_hsv_rgb(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {dimC});
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {dimC});
const Nd4jLong numOfTads = packX.numberOfTads();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock;
PointersManager manager(context, "hsv_to_rgb");
NDArray::prepareSpecialUse({output}, {input});
BUILD_SINGLE_SELECTOR(input->dataType(), hsvToRgbCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformOffsets(), numOfTads, dimC), FLOAT_TYPES);
NDArray::registerSpecialUse({output}, {input});
manager.synchronize();
}
void transform_rgb_hsv(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {dimC});
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {dimC});
const Nd4jLong numOfTads = packX.numberOfTads();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock;
PointersManager manager(context, "rgb_to_hsv");
NDArray::prepareSpecialUse({output}, {input});
BUILD_SINGLE_SELECTOR(input->dataType(), rgbToHsvCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformOffsets(), numOfTads, dimC), FLOAT_TYPES);
NDArray::registerSpecialUse({output}, {input});
manager.synchronize();
}
}
}
}