/******************************************************************************* * Copyright (c) 2019 Konduit K.K. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ #include #include #include #include #include namespace nd4j { namespace ops { namespace helpers { template static void _CUDA_G rgbToHsvCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets, void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets, const Nd4jLong numOfTads, const int dimC) { const T* x = reinterpret_cast(vx); T* z = reinterpret_cast(vz); __shared__ int rank; __shared__ Nd4jLong xDimCstride, zDimCstride; if (threadIdx.x == 0) { rank = shape::rank(xShapeInfo); xDimCstride = shape::stride(xShapeInfo)[dimC]; zDimCstride = shape::stride(zShapeInfo)[dimC]; } __syncthreads(); const auto tid = blockIdx.x * blockDim.x + threadIdx.x; for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) { const T* xTad = x + xTadOffsets[i]; T* zTad = z + zTadOffsets[i]; rgbToHsv(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]); } } template static void _CUDA_G hsvToRgbCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets, void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets, const Nd4jLong numOfTads, const int dimC) { const T* x = reinterpret_cast(vx); T* z = reinterpret_cast(vz); __shared__ int rank; __shared__ Nd4jLong xDimCstride, zDimCstride; if (threadIdx.x == 0) { rank = shape::rank(xShapeInfo); xDimCstride = shape::stride(xShapeInfo)[dimC]; zDimCstride = shape::stride(zShapeInfo)[dimC]; } __syncthreads(); const auto tid = blockIdx.x * blockDim.x + threadIdx.x; for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) { const T* xTad = x + xTadOffsets[i]; T* zTad = z + zTadOffsets[i]; hsvToRgb(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]); } } /////////////////////////////////////////////////////////////////// template static _CUDA_H void hsvToRgbCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream, const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets, void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets, const Nd4jLong numOfTads, const int dimC) { hsvToRgbCuda<<>>(vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, dimC); } template static _CUDA_H void rgbToHsvCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream, const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets, void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets, const Nd4jLong numOfTads, const int dimC) { rgbToHsvCuda<<>>(vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, dimC); } void transform_hsv_rgb(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) { auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {dimC}); auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {dimC}); const Nd4jLong numOfTads = packX.numberOfTads(); const int threadsPerBlock = MAX_NUM_THREADS / 2; const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock; PointersManager manager(context, "hsv_to_rgb"); NDArray::prepareSpecialUse({output}, {input}); BUILD_SINGLE_SELECTOR(input->dataType(), hsvToRgbCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformOffsets(), numOfTads, dimC), FLOAT_TYPES); NDArray::registerSpecialUse({output}, {input}); manager.synchronize(); } void transform_rgb_hsv(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) { auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {dimC}); auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {dimC}); const Nd4jLong numOfTads = packX.numberOfTads(); const int threadsPerBlock = MAX_NUM_THREADS / 2; const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock; PointersManager manager(context, "rgb_to_hsv"); NDArray::prepareSpecialUse({output}, {input}); BUILD_SINGLE_SELECTOR(input->dataType(), rgbToHsvCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformOffsets(), numOfTads, dimC), FLOAT_TYPES); NDArray::registerSpecialUse({output}, {input}); manager.synchronize(); } } } }