/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
#include <ops/declarable/helpers/helpers.h>
#include <execution/Threads.h>
namespace nd4j {
namespace ops {
namespace helpers {
void crossBatched(nd4j::LaunchContext * context, NDArray *a, NDArray *b, NDArray *o);
void FORCEINLINE cross(nd4j::LaunchContext * context, NDArray *a, NDArray *b, NDArray *o) {
if (a->isR()) {
auto a0 = a->e<double>(0);
auto a1 = a->e<double>(1);
auto a2 = a->e<double>(2);
auto b0 = b->e<double>(0);
auto b1 = b->e<double>(1);
auto b2 = b->e<double>(2);
o->p(Nd4jLong(0L), a1 * b2 - a2 * b1);
o->p(1L, a2 * b0 - a0 * b2);
o->p(2L, a0 * b1 - a1 * b0);
} else {
auto a0 = a->e<Nd4jLong>(0);
auto a1 = a->e<Nd4jLong>(1);
auto a2 = a->e<Nd4jLong>(2);
auto b0 = b->e<Nd4jLong>(0);
auto b1 = b->e<Nd4jLong>(1);
auto b2 = b->e<Nd4jLong>(2);
}
void FORCEINLINE _crossBatched(nd4j::LaunchContext * context, NDArray *a, NDArray *b, NDArray *o) {
auto a_ = a->reshape(a->ordering(), {-1, 3});
auto b_ = b->reshape(b->ordering(), {-1, 3});
auto o_ = o->reshape(o->ordering(), {-1, 3}, false);
auto tadsA = a_.allTensorsAlongDimension({1});
auto tadsB = b_.allTensorsAlongDimension({1});
auto tadsO = o_.allTensorsAlongDimension({1});
int tads = tadsA.size();
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
auto a_ = tadsA.at(e);
auto b_ = tadsB.at(e);
auto o_ = tadsO.at(e);
helpers::cross(context, a_, b_, o_);
};
samediff::Threads::parallel_tad(func, 0, tads);
void weightedCrossEntropyWithLogitsFunctor(nd4j::LaunchContext * context, NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output);