87 lines
2.8 KiB
C
87 lines
2.8 KiB
C
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author raver119@gmail.com
|
||
|
//
|
||
|
|
||
|
#include <ops/declarable/helpers/helpers.h>
|
||
|
|
||
|
namespace nd4j {
|
||
|
namespace ops {
|
||
|
namespace helpers {
|
||
|
void FORCEINLINE _cross(nd4j::LaunchContext * context, NDArray *a, NDArray *b, NDArray *o) {
|
||
|
if (a->isR()) {
|
||
|
auto a0 = a->e<double>(0);
|
||
|
auto a1 = a->e<double>(1);
|
||
|
auto a2 = a->e<double>(2);
|
||
|
|
||
|
auto b0 = b->e<double>(0);
|
||
|
auto b1 = b->e<double>(1);
|
||
|
auto b2 = b->e<double>(2);
|
||
|
|
||
|
Nd4jLong idx = 0L;
|
||
|
o->p(Nd4jLong(0L), a1 * b2 - a2 * b1);
|
||
|
o->p(1L, a2 * b0 - a0 * b2);
|
||
|
o->p(2L, a0 * b1 - a1 * b0);
|
||
|
} else {
|
||
|
auto a0 = a->e<Nd4jLong>(0);
|
||
|
auto a1 = a->e<Nd4jLong>(1);
|
||
|
auto a2 = a->e<Nd4jLong>(2);
|
||
|
|
||
|
auto b0 = b->e<Nd4jLong>(0);
|
||
|
auto b1 = b->e<Nd4jLong>(1);
|
||
|
auto b2 = b->e<Nd4jLong>(2);
|
||
|
|
||
|
Nd4jLong idx = 0L;
|
||
|
o->p(Nd4jLong(0L), a1 * b2 - a2 * b1);
|
||
|
o->p(1L, a2 * b0 - a0 * b2);
|
||
|
o->p(2L, a0 * b1 - a1 * b0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void FORCEINLINE _crossBatched(nd4j::LaunchContext * context, NDArray *a, NDArray *b, NDArray *o) {
|
||
|
auto _a = a->reshape(a->ordering(), {-1, 3});
|
||
|
auto _b = b->reshape(b->ordering(), {-1, 3});
|
||
|
auto _o = o->reshape(o->ordering(), {-1, 3});
|
||
|
|
||
|
auto tadsA = _a->allTensorsAlongDimension({1});
|
||
|
auto tadsB = _b->allTensorsAlongDimension({1});
|
||
|
auto tadsO = _o->allTensorsAlongDimension({1});
|
||
|
|
||
|
int tads = tadsA->size();
|
||
|
|
||
|
PRAGMA_OMP_PARALLEL_FOR_SIMD
|
||
|
for (int e = 0; e < tads; e++) {
|
||
|
auto a_ = tadsA->at(e);
|
||
|
auto b_ = tadsB->at(e);
|
||
|
auto o_ = tadsO->at(e);
|
||
|
|
||
|
helpers::_cross(context, a_, b_, o_);
|
||
|
}
|
||
|
|
||
|
delete tadsA;
|
||
|
delete tadsB;
|
||
|
delete tadsO;
|
||
|
delete _a;
|
||
|
delete _b;
|
||
|
delete _o;
|
||
|
}
|
||
|
|
||
|
void weightedCrossEntropyWithLogitsFunctor(nd4j::LaunchContext * context, NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output);
|
||
|
}
|
||
|
}
|
||
|
}
|