2019-11-04 14:42:28 +01:00
|
|
|
|
/*******************************************************************************
|
2019-11-06 11:49:27 +01:00
|
|
|
|
* Copyright (c) 2019 Konduit K.K.
|
2019-11-04 14:42:28 +01:00
|
|
|
|
*
|
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
|
*
|
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
|
* under the License.
|
|
|
|
|
*
|
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// @author sgazeos@gmail.com
|
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
#include <ops/declarable/helpers/random.h>
|
|
|
|
|
//#include <NativeOps.h>
|
|
|
|
|
#include <vector>
|
|
|
|
|
#include <memory>
|
|
|
|
|
#include <graph/Context.h>
|
|
|
|
|
#include <helpers/RandomLauncher.h>
|
|
|
|
|
#include <ShapeUtils.h>
|
|
|
|
|
#include <NDArrayFactory.h>
|
2019-11-06 11:49:27 +01:00
|
|
|
|
#include <cuda_exception.h>
|
Oleh multinomial (#163)
* libnd4j: Multinomial op #8570 first raw step of multinomial random data generator implementation
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op #8570 next step of multinomial random categories generator implementation on both cpu and cuda, need corrections and code clean up before review and testing
* libnd4j: Multinomial op #8570 code clean up and fixed issues data selecting, moved from coords to tads
* libnd4j: Multinomial op #8570 fixed cuda build add reference for math materials that was used for implementation
* libnd4j: Multinomial op #8570 fixed several bugs, added several tests and improved cuda version. current implementation works, need testing of reproduction with the same seed
* libnd4j: Multinomial op #8570 fixes and optimization after discussion in both cuda and cpu
* libnd4j: Multinomial op #8570 add corrections after review, removed tads, replace 2D parallel loop by 3D
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed declaration and add tests need discussion
* libnd4j: Multinomial op fix in test
* libnd4j: Multinomial op corrected behavior to get reproducible results, fixed issue in uniform value getting, tests added, need cuda review and cuda testing
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed indexing on uniform calculation
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op some corrections in max min declaration
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed index calculation, added rewind, corrected input declaration, added stats tests, both cuda and cpu. cuda need testing
* libnd4j: Multinomial op fixed bugs on cuda nad cpu. need review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op corrected tests to handle different orders
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op some improvements after code review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op more corrections after review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed seed usage, update tests, fixed cuda based on comments, fixed bug of rewind, removed one behavior, minor corrections.
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op minor corrections
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op rise the bound of fluctuation for random cases
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op modified operation inputs and update implementation and tests on both cpu and cuda
* libnd4j: Multinomial op corrected data types according ops.proto
Co-authored-by: raver119 <raver119@gmail.com>
2020-01-06 20:35:05 +01:00
|
|
|
|
#include <helpers/ConstantTadHelper.h>
|
|
|
|
|
#include <PointersManager.h>
|
2019-11-04 14:42:28 +01:00
|
|
|
|
|
|
|
|
|
namespace nd4j {
|
|
|
|
|
namespace ops {
|
|
|
|
|
namespace helpers {
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* fillGammaKernel - fill up output with gamma distributed values
|
|
|
|
|
*
|
|
|
|
|
* uList - uniformly distributed values set
|
|
|
|
|
* uLength - length of uList
|
|
|
|
|
* alpha - alpha param
|
|
|
|
|
* beta - beta param
|
|
|
|
|
* output - distributed output.
|
|
|
|
|
* */
|
|
|
|
|
template <typename T>
|
|
|
|
|
static __global__ void fillGammaKernel(T* uList, Nd4jLong uLength, T* alpha, Nd4jLong* alphaShape,
|
|
|
|
|
T* beta, Nd4jLong* betaShape, T* output, Nd4jLong* outputShape) {
|
|
|
|
|
// fill up
|
|
|
|
|
__shared__ Nd4jLong aLength;
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
|
aLength = shape::length(alphaShape);
|
|
|
|
|
}
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
|
|
for (auto k = blockIdx.x; k < (int)uLength; k += gridDim.x) {
|
|
|
|
|
auto pos = k * aLength;
|
|
|
|
|
auto u = uList[k]; // this is a vector
|
|
|
|
|
for (auto e = threadIdx.x; e < (int)aLength; e += blockDim.x) {
|
|
|
|
|
auto aIndex = shape::getIndexOffset(e, alphaShape);
|
|
|
|
|
auto bIndex = betaShape?shape::getIndexOffset(e, betaShape):-1LL;
|
|
|
|
|
auto betaV = T(beta != nullptr ? beta[bIndex] * u : u);
|
|
|
|
|
auto zIndex = shape::getIndexOffset(e + pos, outputShape);
|
|
|
|
|
|
|
|
|
|
output[zIndex] = math::nd4j_igamma<T, T, T>(alpha[aIndex], betaV);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
static void fillRandomGamma_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output) {
|
|
|
|
|
// To fill up output need to broadcast alpha and beta to the same shape and in
|
|
|
|
|
Nd4jLong* broadcasted = nullptr;
|
|
|
|
|
if (beta != nullptr)
|
|
|
|
|
ShapeUtils::evalBroadcastShapeInfo(*alpha, *beta, true, broadcasted, context->getWorkspace());
|
|
|
|
|
else
|
|
|
|
|
broadcasted = alpha->shapeInfo();
|
|
|
|
|
auto step = shape::length(broadcasted);
|
|
|
|
|
auto shift = output->lengthOf() / step;
|
|
|
|
|
|
|
|
|
|
auto copyAlpha = alpha;
|
|
|
|
|
auto copyBeta = beta;
|
|
|
|
|
if (beta != nullptr) {
|
|
|
|
|
NDArray alphaBroadcasted(broadcasted, alpha->dataType(), true, context);
|
|
|
|
|
NDArray betaBroadcasted(broadcasted, beta->dataType(), true, context);
|
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
|
copyAlpha = new NDArray(alphaBroadcasted.applyTrueBroadcast(BroadcastOpsTuple::Assign(), *alpha));
|
|
|
|
|
copyBeta = new NDArray(betaBroadcasted.applyTrueBroadcast(BroadcastOpsTuple::Assign(), *beta));
|
2019-11-04 14:42:28 +01:00
|
|
|
|
copyAlpha->tickWriteDevice(); copyBeta->tickWriteDevice();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
auto stream = context->getCudaStream();
|
|
|
|
|
NDArray uniform = NDArrayFactory::create<T>('c', {shift}, context);
|
|
|
|
|
uniform.syncToDevice();
|
|
|
|
|
// fill up uniform with given length
|
|
|
|
|
RandomLauncher::fillUniform(context, rng, &uniform, 0., 1.);
|
|
|
|
|
|
|
|
|
|
fillGammaKernel<T><<<128, 128, 256, *stream>>>(uniform.dataBuffer()->specialAsT<T>(), shift,
|
|
|
|
|
copyAlpha->dataBuffer()->specialAsT<T>(), copyAlpha->specialShapeInfo(),
|
|
|
|
|
beta?copyBeta->dataBuffer()->specialAsT<T>():(T*)nullptr,
|
|
|
|
|
beta?copyBeta->specialShapeInfo():(Nd4jLong*)nullptr,
|
|
|
|
|
output->dataBuffer()->specialAsT<T>(), output->specialShapeInfo());
|
|
|
|
|
|
|
|
|
|
if (beta != nullptr) {
|
|
|
|
|
delete copyAlpha;
|
|
|
|
|
delete copyBeta;
|
|
|
|
|
//delete broadcasted;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void fillRandomGamma(LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output) {
|
|
|
|
|
if (beta)
|
|
|
|
|
NDArray::prepareSpecialUse({output}, {alpha, beta});
|
|
|
|
|
else
|
|
|
|
|
NDArray::prepareSpecialUse({output}, {alpha});
|
|
|
|
|
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomGamma_, (context, rng, alpha, beta, output), FLOAT_NATIVE);
|
|
|
|
|
if (beta)
|
|
|
|
|
NDArray::registerSpecialUse({output}, {alpha, beta});
|
|
|
|
|
else
|
|
|
|
|
NDArray::prepareSpecialUse({output}, {alpha});
|
|
|
|
|
}
|
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void fillRandomGamma_, (LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output), FLOAT_NATIVE);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* algorithm Poisson generator based upon the inversion by sequential search
|
|
|
|
|
*
|
|
|
|
|
init:
|
|
|
|
|
Let x ← 0, p ← e−λ, s ← p.
|
|
|
|
|
using uniformly random sequence U (u in U) distributed at [0, 1].
|
|
|
|
|
while u > s do:
|
|
|
|
|
x ← x + 1.
|
|
|
|
|
p ← p * λ / x.
|
|
|
|
|
s ← s + p.
|
|
|
|
|
return x.
|
|
|
|
|
* */
|
|
|
|
|
template <typename T>
|
|
|
|
|
static __global__ void fillPoissonKernel(T* uList, Nd4jLong uLength, T* lambda, Nd4jLong* lambdaShape, T* output,
|
|
|
|
|
Nd4jLong* outputShape) {
|
|
|
|
|
|
|
|
|
|
__shared__ Nd4jLong step;
|
|
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
|
step = shape::length(lambdaShape);
|
|
|
|
|
}
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
|
|
for (auto k = blockIdx.x; k < (int)uLength; k += gridDim.x) {
|
|
|
|
|
auto pos = k * step;
|
|
|
|
|
auto u = uList[k];
|
|
|
|
|
for (auto e = threadIdx.x; e < step; e += blockDim.x) {
|
|
|
|
|
auto p = math::nd4j_exp<T,T>(-lambda[e]);
|
|
|
|
|
auto s = p;
|
|
|
|
|
auto x = T(0.f);
|
|
|
|
|
auto lIndex = shape::getIndexOffset(e, lambdaShape);
|
|
|
|
|
auto zIndex = shape::getIndexOffset(e + pos, outputShape);
|
|
|
|
|
while (u > s) {
|
|
|
|
|
x += T(1.);
|
|
|
|
|
p *= lambda[lIndex] / x;
|
|
|
|
|
s += p;
|
|
|
|
|
}
|
|
|
|
|
output[zIndex] = x;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
static void fillRandomPoisson_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output) {
|
|
|
|
|
auto shift = output->lengthOf() / lambda->lengthOf();
|
|
|
|
|
NDArray uniform('c', {shift}, output->dataType());
|
|
|
|
|
auto stream = context->getCudaStream();
|
|
|
|
|
// fill up uniform with given length
|
|
|
|
|
RandomLauncher::fillUniform(context, rng, &uniform, 0., 1.);
|
|
|
|
|
fillPoissonKernel<T><<<128, 256, 128, *stream>>>(uniform.dataBuffer()->specialAsT<T>(), uniform.lengthOf(),
|
|
|
|
|
lambda->dataBuffer()->specialAsT<T>(), lambda->specialShapeInfo(),
|
|
|
|
|
output->dataBuffer()->specialAsT<T>(), output->specialShapeInfo());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void fillRandomPoisson(LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output) {
|
|
|
|
|
NDArray::prepareSpecialUse({output}, {lambda});
|
|
|
|
|
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomPoisson_, (context, rng, lambda, output), FLOAT_NATIVE);
|
|
|
|
|
NDArray::registerSpecialUse({output}, {lambda});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void fillRandomPoisson_, (LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output), FLOAT_NATIVE);
|
2019-11-06 11:49:27 +01:00
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
static __global__ void fillUniformKernel(graph::RandomGenerator* devRng, T from, T to, T* output, Nd4jLong* outputShape) {
|
|
|
|
|
auto start = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
|
auto step = blockDim.x * gridDim.x;
|
|
|
|
|
|
|
|
|
|
__shared__ Nd4jLong outputLen;
|
|
|
|
|
|
|
|
|
|
if (0 == threadIdx.x) {
|
|
|
|
|
outputLen = shape::length(outputShape);
|
|
|
|
|
}
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
|
|
for (auto i = start; i < outputLen; i += step) {
|
|
|
|
|
auto zIndex = shape::getIndexOffset(i, outputShape);
|
|
|
|
|
output[zIndex] = devRng->relativeT<T>(i, from, to);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
static void fillRandomUniform_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* min, NDArray* max, NDArray* output) {
|
|
|
|
|
T minVal = T(0);
|
|
|
|
|
T maxVal = DataTypeUtils::infOrMax<T>();
|
|
|
|
|
if (min)
|
|
|
|
|
minVal = min->t<T>(0);
|
|
|
|
|
if (max)
|
|
|
|
|
maxVal = max->t<T>(0);
|
|
|
|
|
|
|
|
|
|
if (output->isR())
|
|
|
|
|
RandomLauncher::fillUniform(context, rng, output, minVal, maxVal);
|
|
|
|
|
else {
|
|
|
|
|
auto stream = context->getCudaStream();
|
|
|
|
|
graph::RandomGenerator *devRng;
|
|
|
|
|
auto err = cudaMalloc(&devRng, sizeof(graph::RandomGenerator));
|
|
|
|
|
if (err != 0) {
|
|
|
|
|
cuda_exception::build("fillRandomUniform_: Cannot allocate device memory for random generator due error", err);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
err = cudaMemcpy(devRng, &rng, sizeof(graph::RandomGenerator), cudaMemcpyHostToDevice);
|
|
|
|
|
if (err != 0) {
|
|
|
|
|
cuda_exception::build("fillRandomUniform_: Cannot copy random generator to device", err);
|
|
|
|
|
}
|
|
|
|
|
auto outputBuf = output->dataBuffer()->specialAsT<T>();
|
|
|
|
|
auto outputShape = output->specialShapeInfo();
|
|
|
|
|
fillUniformKernel<T><<<128, 128, 128, *stream>>>(devRng, minVal, maxVal, outputBuf, outputShape);
|
|
|
|
|
|
|
|
|
|
err = cudaStreamSynchronize(*stream);
|
|
|
|
|
if (err != 0) {
|
|
|
|
|
cuda_exception::build("fillRandomUniform_: Cannot successfully finish kernel call", err);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
err = cudaFree(devRng);
|
|
|
|
|
if (err != 0) {
|
|
|
|
|
cuda_exception::build("fillRandomUniform_: Cannot deallocate device memory for random generator", err);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void fillRandomUniform(LaunchContext* context, graph::RandomGenerator& rng, NDArray* min, NDArray* max, NDArray* output) {
|
|
|
|
|
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomUniform_, (context, rng, min, max, output), NUMERIC_TYPES);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void fillRandomUniform_, (LaunchContext* context,
|
|
|
|
|
graph::RandomGenerator& rng, NDArray* min, NDArray* max, NDArray* output), NUMERIC_TYPES);
|
|
|
|
|
|
Oleh multinomial (#163)
* libnd4j: Multinomial op #8570 first raw step of multinomial random data generator implementation
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op #8570 next step of multinomial random categories generator implementation on both cpu and cuda, need corrections and code clean up before review and testing
* libnd4j: Multinomial op #8570 code clean up and fixed issues data selecting, moved from coords to tads
* libnd4j: Multinomial op #8570 fixed cuda build add reference for math materials that was used for implementation
* libnd4j: Multinomial op #8570 fixed several bugs, added several tests and improved cuda version. current implementation works, need testing of reproduction with the same seed
* libnd4j: Multinomial op #8570 fixes and optimization after discussion in both cuda and cpu
* libnd4j: Multinomial op #8570 add corrections after review, removed tads, replace 2D parallel loop by 3D
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed declaration and add tests need discussion
* libnd4j: Multinomial op fix in test
* libnd4j: Multinomial op corrected behavior to get reproducible results, fixed issue in uniform value getting, tests added, need cuda review and cuda testing
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed indexing on uniform calculation
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op some corrections in max min declaration
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed index calculation, added rewind, corrected input declaration, added stats tests, both cuda and cpu. cuda need testing
* libnd4j: Multinomial op fixed bugs on cuda nad cpu. need review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op corrected tests to handle different orders
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op some improvements after code review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op more corrections after review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed seed usage, update tests, fixed cuda based on comments, fixed bug of rewind, removed one behavior, minor corrections.
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op minor corrections
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op rise the bound of fluctuation for random cases
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op modified operation inputs and update implementation and tests on both cpu and cuda
* libnd4j: Multinomial op corrected data types according ops.proto
Co-authored-by: raver119 <raver119@gmail.com>
2020-01-06 20:35:05 +01:00
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
|
// used https://en.wikipedia.org/wiki/Categorical_distribution
|
|
|
|
|
// methods: gumbel trick + softmax + argmax
|
|
|
|
|
template<typename X, typename Z>
|
|
|
|
|
__global__ static void fillMultiNomialCuda_(graph::RandomGenerator* devRng, const void* vx, const Nd4jLong* xShapeInfo,
|
|
|
|
|
void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong batchValue,
|
|
|
|
|
const Nd4jLong numOfSamples, const Nd4jLong numOfClassX,
|
|
|
|
|
const Nd4jLong dimA, const X minVal, const X maxVal) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const X* x = reinterpret_cast<const X*>(vx);
|
|
|
|
|
Z* z = reinterpret_cast<Z*>(vz);
|
|
|
|
|
|
|
|
|
|
__shared__ Nd4jLong xDimAstride, zDimAstride, xDimCstride, zDimCstride, dimC;
|
|
|
|
|
|
|
|
|
|
if (0 == threadIdx.x) {
|
|
|
|
|
dimC = (0 == dimA) ? 1 : 0;
|
|
|
|
|
zDimAstride = shape::stride(zShapeInfo)[dimA];
|
|
|
|
|
xDimAstride = shape::stride(xShapeInfo)[dimA];
|
|
|
|
|
zDimCstride = shape::stride(zShapeInfo)[dimC];
|
|
|
|
|
xDimCstride = shape::stride(xShapeInfo)[dimC];
|
|
|
|
|
}
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
|
|
|
|
|
|
for (Nd4jLong index = tid; index < batchValue*numOfSamples; index += gridDim.x * blockDim.x) {
|
|
|
|
|
|
|
|
|
|
Nd4jLong nBatchIndex = index / numOfSamples;
|
|
|
|
|
Nd4jLong nSampleIndexInBatch = index - (nBatchIndex * numOfSamples);
|
|
|
|
|
|
|
|
|
|
const X* xTad = x + (nBatchIndex * xDimCstride);
|
|
|
|
|
Z* zTad = z + (nBatchIndex * zDimCstride);
|
|
|
|
|
Z& arg = zTad[nSampleIndexInBatch * zDimAstride];
|
|
|
|
|
|
|
|
|
|
X Max = -minVal;
|
|
|
|
|
Nd4jLong nSamplesPerBatch = nBatchIndex * numOfClassX * numOfSamples;
|
|
|
|
|
Nd4jLong nClassPerSamples = nSampleIndexInBatch * numOfClassX;
|
|
|
|
|
|
|
|
|
|
for (Nd4jLong nClass = 0; nClass < numOfClassX; nClass++) {
|
|
|
|
|
Nd4jLong nIndex = nSamplesPerBatch + nClassPerSamples + nClass;
|
|
|
|
|
X tValue = (xTad[nClass * xDimAstride] - nd4j::math::nd4j_log<X, X>(-nd4j::math::nd4j_log<X, X>(devRng->relativeT<X>(nIndex, minVal, maxVal))));
|
|
|
|
|
if (tValue > Max) {
|
|
|
|
|
Max = tValue;
|
|
|
|
|
arg = nClass;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
|
template<typename X, typename Z>
|
|
|
|
|
__host__ static void fillMultiNomialCudaLauncher(
|
|
|
|
|
const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t* stream,
|
|
|
|
|
graph::RandomGenerator* devRng, const void* vx, const Nd4jLong* xShapeInfo,
|
|
|
|
|
void* vz, const Nd4jLong* zShapeInfo,
|
|
|
|
|
const Nd4jLong batchValue, const Nd4jLong numOfSamples,
|
|
|
|
|
const Nd4jLong numOfClassX, const Nd4jLong dimA){
|
|
|
|
|
|
|
|
|
|
const X minVal = DataTypeUtils::min<X>();
|
|
|
|
|
const X maxVal = 1.0;
|
|
|
|
|
|
|
|
|
|
fillMultiNomialCuda_<X, Z> <<< blocksPerGrid, threadsPerBlock, 256, * stream >>> (
|
|
|
|
|
devRng, vx, xShapeInfo, vz, zShapeInfo, batchValue,
|
|
|
|
|
numOfSamples, numOfClassX, dimA, minVal, maxVal);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
|
void fillRandomMultiNomial(LaunchContext* context, graph::RandomGenerator& rng, NDArray& input, NDArray& output, const Nd4jLong numOfSamples, const int dimC) {
|
|
|
|
|
|
|
|
|
|
Nd4jLong dimA = (0 == dimC) ? 1 : 0;
|
|
|
|
|
|
|
|
|
|
const Nd4jLong batchValue = output.sizeAt(dimC);
|
|
|
|
|
const Nd4jLong numOfClassX = input.sizeAt(dimA);
|
|
|
|
|
|
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 2;
|
|
|
|
|
const int blocksPerGrid = (batchValue * numOfSamples + threadsPerBlock - 1) / threadsPerBlock;
|
|
|
|
|
|
|
|
|
|
PointersManager manager(context, "fillMultinomial");
|
|
|
|
|
graph::RandomGenerator *devRng;
|
|
|
|
|
|
|
|
|
|
auto err = cudaMalloc(&devRng, sizeof(graph::RandomGenerator));
|
|
|
|
|
if (err != 0) {
|
|
|
|
|
cuda_exception::build("fillRandomMultiNomial: Cannot allocate device memory for random generator due error", err);
|
|
|
|
|
}
|
|
|
|
|
err = cudaStreamSynchronize(*context->getCudaStream());
|
|
|
|
|
if (err != 0) {
|
|
|
|
|
cuda_exception::build("fillRandomMultiNomial: Cannot synchronize stream for random generator due error", err);
|
|
|
|
|
}
|
|
|
|
|
err = cudaMemcpyAsync(devRng, &rng, sizeof(graph::RandomGenerator), cudaMemcpyHostToDevice, *context->getCudaStream());
|
|
|
|
|
if (err != 0) {
|
|
|
|
|
cuda_exception::build("fillRandomMultiNomial: Cannot copy random generator to device", err);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
NDArray::prepareSpecialUse({ &output }, { &input });
|
|
|
|
|
BUILD_DOUBLE_SELECTOR(input.dataType(), output.dataType(), fillMultiNomialCudaLauncher,
|
|
|
|
|
(blocksPerGrid, threadsPerBlock, context->getCudaStream(), devRng, input.getSpecialBuffer(),
|
|
|
|
|
input.getSpecialShapeInfo(), output.specialBuffer(),
|
|
|
|
|
output.specialShapeInfo(), batchValue, numOfSamples,
|
|
|
|
|
numOfClassX, dimA), FLOAT_TYPES, INDEXING_TYPES);
|
|
|
|
|
NDArray::registerSpecialUse({ &output }, { &input });
|
|
|
|
|
manager.synchronize();
|
|
|
|
|
|
|
|
|
|
err = cudaFree(devRng);
|
|
|
|
|
if (err != 0) {
|
|
|
|
|
cuda_exception::build("fillRandomMultiNomial: Cannot deallocate device memory for random generator", err);
|
|
|
|
|
}
|
|
|
|
|
rng.rewindH(output.lengthOf() * numOfClassX);
|
|
|
|
|
}
|
|
|
|
|
|
2019-11-04 14:42:28 +01:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|