cavis/libnd4j/include/ops/declarable/helpers/cuda/random.cu

186 lines
7.5 KiB
Plaintext
Raw Normal View History

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author sgazeos@gmail.com
//
#include <ops/declarable/helpers/random.h>
//#include <NativeOps.h>
#include <vector>
#include <memory>
#include <graph/Context.h>
#include <helpers/RandomLauncher.h>
#include <ShapeUtils.h>
#include <NDArrayFactory.h>
namespace nd4j {
namespace ops {
namespace helpers {
/*
* fillGammaKernel - fill up output with gamma distributed values
*
* uList - uniformly distributed values set
* uLength - length of uList
* alpha - alpha param
* beta - beta param
* output - distributed output.
* */
template <typename T>
static __global__ void fillGammaKernel(T* uList, Nd4jLong uLength, T* alpha, Nd4jLong* alphaShape,
T* beta, Nd4jLong* betaShape, T* output, Nd4jLong* outputShape) {
// fill up
__shared__ Nd4jLong aLength;
if (threadIdx.x == 0) {
aLength = shape::length(alphaShape);
}
__syncthreads();
for (auto k = blockIdx.x; k < (int)uLength; k += gridDim.x) {
auto pos = k * aLength;
auto u = uList[k]; // this is a vector
for (auto e = threadIdx.x; e < (int)aLength; e += blockDim.x) {
auto aIndex = shape::getIndexOffset(e, alphaShape);
auto bIndex = betaShape?shape::getIndexOffset(e, betaShape):-1LL;
auto betaV = T(beta != nullptr ? beta[bIndex] * u : u);
auto zIndex = shape::getIndexOffset(e + pos, outputShape);
output[zIndex] = math::nd4j_igamma<T, T, T>(alpha[aIndex], betaV);
}
}
}
template <typename T>
static void fillRandomGamma_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output) {
// To fill up output need to broadcast alpha and beta to the same shape and in
Nd4jLong* broadcasted = nullptr;
if (beta != nullptr)
ShapeUtils::evalBroadcastShapeInfo(*alpha, *beta, true, broadcasted, context->getWorkspace());
else
broadcasted = alpha->shapeInfo();
auto step = shape::length(broadcasted);
auto shift = output->lengthOf() / step;
auto copyAlpha = alpha;
auto copyBeta = beta;
if (beta != nullptr) {
NDArray alphaBroadcasted(broadcasted, alpha->dataType(), true, context);
NDArray betaBroadcasted(broadcasted, beta->dataType(), true, context);
copyAlpha = (alphaBroadcasted.applyTrueBroadcast(BroadcastOpsTuple::Assign(), alpha));
copyBeta = (betaBroadcasted.applyTrueBroadcast(BroadcastOpsTuple::Assign(), beta));
copyAlpha->tickWriteDevice(); copyBeta->tickWriteDevice();
}
auto stream = context->getCudaStream();
NDArray uniform = NDArrayFactory::create<T>('c', {shift}, context);
uniform.syncToDevice();
// fill up uniform with given length
RandomLauncher::fillUniform(context, rng, &uniform, 0., 1.);
fillGammaKernel<T><<<128, 128, 256, *stream>>>(uniform.dataBuffer()->specialAsT<T>(), shift,
copyAlpha->dataBuffer()->specialAsT<T>(), copyAlpha->specialShapeInfo(),
beta?copyBeta->dataBuffer()->specialAsT<T>():(T*)nullptr,
beta?copyBeta->specialShapeInfo():(Nd4jLong*)nullptr,
output->dataBuffer()->specialAsT<T>(), output->specialShapeInfo());
if (beta != nullptr) {
delete copyAlpha;
delete copyBeta;
//delete broadcasted;
}
}
void fillRandomGamma(LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output) {
if (beta)
NDArray::prepareSpecialUse({output}, {alpha, beta});
else
NDArray::prepareSpecialUse({output}, {alpha});
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomGamma_, (context, rng, alpha, beta, output), FLOAT_NATIVE);
if (beta)
NDArray::registerSpecialUse({output}, {alpha, beta});
else
NDArray::prepareSpecialUse({output}, {alpha});
}
BUILD_SINGLE_TEMPLATE(template void fillRandomGamma_, (LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output), FLOAT_NATIVE);
/*
* algorithm Poisson generator based upon the inversion by sequential search
*
init:
Let x ← 0, p ← eλ, s ← p.
using uniformly random sequence U (u in U) distributed at [0, 1].
while u > s do:
x ← x + 1.
p ← p * λ / x.
s ← s + p.
return x.
* */
template <typename T>
static __global__ void fillPoissonKernel(T* uList, Nd4jLong uLength, T* lambda, Nd4jLong* lambdaShape, T* output,
Nd4jLong* outputShape) {
__shared__ Nd4jLong step;
if (threadIdx.x == 0) {
step = shape::length(lambdaShape);
}
__syncthreads();
for (auto k = blockIdx.x; k < (int)uLength; k += gridDim.x) {
auto pos = k * step;
auto u = uList[k];
for (auto e = threadIdx.x; e < step; e += blockDim.x) {
auto p = math::nd4j_exp<T,T>(-lambda[e]);
auto s = p;
auto x = T(0.f);
auto lIndex = shape::getIndexOffset(e, lambdaShape);
auto zIndex = shape::getIndexOffset(e + pos, outputShape);
while (u > s) {
x += T(1.);
p *= lambda[lIndex] / x;
s += p;
}
output[zIndex] = x;
}
}
}
template <typename T>
static void fillRandomPoisson_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output) {
auto shift = output->lengthOf() / lambda->lengthOf();
NDArray uniform('c', {shift}, output->dataType());
auto stream = context->getCudaStream();
// fill up uniform with given length
RandomLauncher::fillUniform(context, rng, &uniform, 0., 1.);
fillPoissonKernel<T><<<128, 256, 128, *stream>>>(uniform.dataBuffer()->specialAsT<T>(), uniform.lengthOf(),
lambda->dataBuffer()->specialAsT<T>(), lambda->specialShapeInfo(),
output->dataBuffer()->specialAsT<T>(), output->specialShapeInfo());
}
void fillRandomPoisson(LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output) {
NDArray::prepareSpecialUse({output}, {lambda});
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomPoisson_, (context, rng, lambda, output), FLOAT_NATIVE);
NDArray::registerSpecialUse({output}, {lambda});
}
BUILD_SINGLE_TEMPLATE(template void fillRandomPoisson_, (LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output), FLOAT_NATIVE);
}
}
}