2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author raver119@gmail.com
|
|
|
|
//
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
#include <execution/LaunchContext.h>
|
|
|
|
#include <exceptions/cuda_exception.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#include <op_boilerplate.h>
|
|
|
|
#include <loops/reduce_float.h>
|
2019-08-02 19:01:03 +02:00
|
|
|
#include <loops/scalar.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#include <loops/legacy_ops.h>
|
|
|
|
#include <helpers/DebugHelper.h>
|
|
|
|
#include <types/types.h>
|
|
|
|
#include <specials_cuda.h>
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
#include <cuda.h>
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
using namespace simdOps;
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Z, typename OpType>
|
|
|
|
__global__ void simpleReduce(void *x, Nd4jLong *xShapeInfo,
|
|
|
|
void *extraParams,
|
|
|
|
void *z, Nd4jLong *zShapeInfo,
|
|
|
|
int *dimension, int dimensionLength,
|
2019-08-02 19:01:03 +02:00
|
|
|
void *reductionBuffer,
|
2019-06-06 14:21:15 +02:00
|
|
|
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) {
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
functions::reduce::ReduceFloatFunction<X,Z>::template transformCudaXD<OpType>(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo, tadOffsets);
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Z, typename OpType>
|
|
|
|
__global__ void simpleScalar(void *x, Nd4jLong *xShapeInfo,
|
|
|
|
void *extraParams,
|
|
|
|
void *z, Nd4jLong *zShapeInfo,
|
|
|
|
int *dimension, int dimensionLength,
|
|
|
|
void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) {
|
|
|
|
|
|
|
|
functions::reduce::ReduceFloatFunction<X, Z>::template execScalarCuda<OpType>(x, xShapeInfo, extraParams, z, zShapeInfo, reductionBuffer, tadOnlyShapeInfo);
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace functions {
|
|
|
|
namespace reduce {
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Z>
|
|
|
|
template <typename OpType>
|
|
|
|
__device__ void ReduceFloatFunction<X,Z>::aggregatePartials(void *vsPartials, Nd4jLong tid, Nd4jLong numItems, void *vextraParams) {
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
// start the shared memory loop on the next power of 2 less
|
|
|
|
// than the block size. If block size is not a power of 2,
|
|
|
|
// accumulate the intermediate sums in the remainder range.
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto sPartials = reinterpret_cast<Z*>(vsPartials);
|
|
|
|
auto extraParams = reinterpret_cast<Z*>(vextraParams);
|
|
|
|
|
|
|
|
Nd4jLong floorPow2 = numItems;
|
|
|
|
|
|
|
|
if (floorPow2 & (floorPow2 - 1)) {
|
2019-08-02 19:01:03 +02:00
|
|
|
|
|
|
|
while (floorPow2 & (floorPow2 - 1))
|
2019-06-06 14:21:15 +02:00
|
|
|
floorPow2 &= floorPow2 - 1;
|
2019-08-02 19:01:03 +02:00
|
|
|
|
|
|
|
if (tid >= floorPow2)
|
2019-06-06 14:21:15 +02:00
|
|
|
sPartials[tid - floorPow2] = OpType::update(sPartials[tid - floorPow2], sPartials[tid], extraParams);
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
|
|
|
|
for (Nd4jLong activeThreads = floorPow2 >> 1; activeThreads; activeThreads >>= 1) {
|
2019-08-02 19:01:03 +02:00
|
|
|
if (tid < activeThreads && tid + activeThreads < numItems)
|
2019-06-06 14:21:15 +02:00
|
|
|
sPartials[tid] = OpType::update(sPartials[tid], sPartials[tid + activeThreads], extraParams);
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Z>
|
|
|
|
template <typename OpType>
|
|
|
|
__device__ void ReduceFloatFunction<X,Z>::transformCudaXD( void *vx, Nd4jLong *xShapeInfo,
|
|
|
|
void *vextraParams,
|
|
|
|
void *vz, Nd4jLong *zShapeInfo,
|
|
|
|
int *dimension, int dimensionLength,
|
2019-08-02 19:01:03 +02:00
|
|
|
void *vreductionBuffer,
|
2019-06-06 14:21:15 +02:00
|
|
|
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) {
|
|
|
|
|
|
|
|
auto x = reinterpret_cast<X*>(vx);
|
|
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
|
|
auto extraParams = reinterpret_cast<Z*>(vextraParams);
|
|
|
|
auto reductionBuffer = reinterpret_cast<Z*>(vreductionBuffer);
|
|
|
|
|
|
|
|
//shared memory space for storing intermediate results
|
|
|
|
__shared__ Z* sPartials;
|
2019-08-02 19:01:03 +02:00
|
|
|
__shared__ int tadLength, numTads;
|
2019-06-06 14:21:15 +02:00
|
|
|
__shared__ bool isPlainOutput;
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
extern __shared__ unsigned char shmem[];
|
|
|
|
sPartials = reinterpret_cast<Z*>(shmem);
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
isPlainOutput = shape::order(zShapeInfo) == 'c' && shape::elementWiseStride(zShapeInfo) == 1;
|
2019-08-02 19:01:03 +02:00
|
|
|
|
|
|
|
tadLength = shape::length(tadOnlyShapeInfo);
|
|
|
|
numTads = shape::length(xShapeInfo) / tadLength;
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
__syncthreads();
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
for (int r = blockIdx.x; r < numTads; r += gridDim.x) {
|
2019-08-02 19:01:03 +02:00
|
|
|
|
|
|
|
auto tadOffsetForBlock = tadOffsets[r];
|
2019-06-06 14:21:15 +02:00
|
|
|
sPartials[threadIdx.x] = OpType::startingValue(x + tadOffsetForBlock);
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
for (int i = threadIdx.x; i < tadLength; i += blockDim.x) {
|
2019-09-11 19:12:09 +02:00
|
|
|
auto xOffset = tadOffsetForBlock + shape::getIndexOffset(i, tadOnlyShapeInfo);
|
2019-06-06 14:21:15 +02:00
|
|
|
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[xOffset], extraParams), extraParams);
|
2019-08-02 19:01:03 +02:00
|
|
|
}
|
|
|
|
__syncthreads();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
// aggregate. do NOT reduce for elements > tadLength
|
|
|
|
aggregatePartials<OpType>(sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, tadLength), extraParams);
|
|
|
|
__syncthreads();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
if (threadIdx.x == 0)
|
2019-09-11 19:12:09 +02:00
|
|
|
z[isPlainOutput ? r : shape::getIndexOffset(r, zShapeInfo)] = OpType::postProcess(sPartials[threadIdx.x], tadLength, extraParams);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Z>
|
|
|
|
template <typename OpType>
|
|
|
|
__device__ void ReduceFloatFunction<X,Z>::execScalarCuda(void *vx, Nd4jLong *xShapeInfo,
|
|
|
|
void *vextraParams,
|
|
|
|
void *vz, Nd4jLong *zShapeInfo,
|
|
|
|
void *vreductionBuffer,
|
|
|
|
Nd4jLong *tadOnlyShapeInfo) {
|
|
|
|
|
|
|
|
auto x = reinterpret_cast<X*>(vx);
|
|
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
|
|
auto extraParams = reinterpret_cast<Z*>(vextraParams);
|
|
|
|
auto reductionBuffer = reinterpret_cast<Z*>(vreductionBuffer);
|
|
|
|
|
|
|
|
auto tid = blockDim.x * blockIdx.x + threadIdx.x;
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
//shared memory space for storing intermediate results
|
2019-06-06 14:21:15 +02:00
|
|
|
__shared__ Z* sPartials;
|
|
|
|
__shared__ Nd4jLong xEws;
|
|
|
|
__shared__ Nd4jLong len;
|
|
|
|
|
|
|
|
if(threadIdx.x == 0) {
|
|
|
|
extern __shared__ unsigned char shmem[];
|
|
|
|
sPartials = reinterpret_cast<Z*>(shmem);
|
|
|
|
xEws = shape::elementWiseStride(xShapeInfo);
|
|
|
|
len = shape::length(xShapeInfo);
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
sPartials[threadIdx.x] = OpType::startingValue(x);
|
|
|
|
|
|
|
|
if (xEws > 0)
|
2019-08-02 19:01:03 +02:00
|
|
|
for (int i = tid; i < len; i += (blockDim.x * gridDim.x))
|
|
|
|
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[i * xEws], extraParams), extraParams);
|
2019-06-06 14:21:15 +02:00
|
|
|
else
|
2019-08-02 19:01:03 +02:00
|
|
|
for (int i = tid; i < len; i += blockDim.x * gridDim.x)
|
2019-09-11 19:12:09 +02:00
|
|
|
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[shape::getIndexOffset(i, xShapeInfo)], extraParams), extraParams);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
aggregatePartials<OpType>(sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, len), extraParams);
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (gridDim.x > 1) {
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
unsigned int *tc = (unsigned int *)reductionBuffer;
|
|
|
|
__shared__ bool amLast;
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
tid = threadIdx.x;
|
|
|
|
if (threadIdx.x == 0)
|
|
|
|
reductionBuffer[blockIdx.x] = sPartials[0];//this->postProcess(sPartials[0],len,extraParams);
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
__threadfence();
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
unsigned int ticket = atomicInc(&tc[16384], gridDim.x);
|
|
|
|
amLast = (ticket == gridDim.x - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (amLast) {
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
tc[16384] = 0;
|
|
|
|
sPartials[threadIdx.x] = OpType::startingValue(x);
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
for (int i = threadIdx.x; i < gridDim.x; i += blockDim.x)
|
2019-06-06 14:21:15 +02:00
|
|
|
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], reductionBuffer[i], extraParams);
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
__syncthreads();
|
|
|
|
aggregatePartials<OpType>(sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(gridDim.x, blockDim.x), extraParams);
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
z[0] = OpType::postProcess(sPartials[0], len, extraParams);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
unsigned int *tc = (unsigned *)reductionBuffer;
|
|
|
|
tc[16384] = 0;
|
|
|
|
z[0] = OpType::postProcess(sPartials[0], len, extraParams);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Z>
|
|
|
|
template<typename OpType>
|
2019-08-02 19:01:03 +02:00
|
|
|
__host__ void ReduceFloatFunction<X,Z>::intermediateXD(dim3 launchDims, cudaStream_t *stream, void *x, Nd4jLong *xShape, Nd4jLong *hXShapeInfo, void *extraParams, void *z, Nd4jLong *zShape, Nd4jLong *hZShapeInfo, int *dimension, int dimensionLength, void *reductionPointer, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets) {
|
|
|
|
|
|
|
|
if(shape::isEmpty(hXShapeInfo)) {
|
|
|
|
|
|
|
|
if(shape::isEmpty(hZShapeInfo))
|
|
|
|
return;
|
|
|
|
|
|
|
|
const auto startingVal = std::is_same<OpType, simdOps::Mean<X,Z>>::value ? nd4j::DataTypeUtils::nanOrZero<Z>() : static_cast<Z>(OpType::startingValue(reinterpret_cast<X*>(x)));
|
|
|
|
auto res = cudaMemcpyAsync(nd4j::LaunchContext::defaultContext()->getScalarPointer(), &startingVal, sizeof(Z), cudaMemcpyHostToDevice, *stream);
|
|
|
|
if (res != 0)
|
|
|
|
throw nd4j::cuda_exception::build("ReduceFloatFunction<X,Z>::intermediateXD: failed to copy temporary scalar", res);
|
|
|
|
|
|
|
|
auto ptr = nd4j::LaunchContext::defaultContext()->getScalarPointer();
|
|
|
|
|
|
|
|
// scalar assign
|
2019-12-09 18:08:59 +01:00
|
|
|
functions::scalar::ScalarTransform<Z, Z, Z>::executeCudaShaped(launchDims, stream, 14, z, zShape, hZShapeInfo, z, zShape, hZShapeInfo, ptr, nullptr);
|
2019-08-02 19:01:03 +02:00
|
|
|
}
|
|
|
|
else {
|
|
|
|
simpleReduce<X, Z, OpType><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(x, xShape, extraParams, z, zShape, dimension, dimensionLength, reductionPointer, tadShapeInfo, tadOffsets);
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Z>
|
|
|
|
template<typename OpType>
|
2019-08-02 19:01:03 +02:00
|
|
|
__host__ void ReduceFloatFunction<X,Z>::intermediateScalar(dim3 launchDims, cudaStream_t *stream, void *x, Nd4jLong *xShapeInfo, Nd4jLong *hXShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, Nd4jLong *hZShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) {
|
|
|
|
|
|
|
|
if (shape::isEmpty(hXShapeInfo)) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
if (shape::isEmpty(hZShapeInfo))
|
|
|
|
return;
|
|
|
|
|
|
|
|
const auto startingVal = std::is_same<OpType, simdOps::Mean<X,Z>>::value ? nd4j::DataTypeUtils::nanOrZero<Z>() : static_cast<Z>(OpType::startingValue(reinterpret_cast<X*>(x)));
|
|
|
|
|
|
|
|
auto res = cudaMemcpyAsync(z, &startingVal, sizeof(Z), cudaMemcpyHostToDevice, *stream);
|
|
|
|
if (res != 0)
|
|
|
|
throw nd4j::cuda_exception::build("ReduceFloatFunction<X,Z>::intermediateScalar: failed to copy resulting scalar", res);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
simpleScalar<X, Z, OpType> << < launchDims.x, launchDims.y, launchDims.z, *stream>>>(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo);
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Y>
|
2019-08-02 19:01:03 +02:00
|
|
|
_CUDA_H void ReduceFloatFunction<X,Y>::execReduceScalar(dim3 launchDims, cudaStream_t *stream, int opNum, void *x, Nd4jLong *xShapeInfo, Nd4jLong *hXShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, Nd4jLong *hZShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) {
|
|
|
|
|
|
|
|
DISPATCH_BY_OPNUM_TT(intermediateScalar, PARAMS(launchDims, stream, x, xShapeInfo, hXShapeInfo, extraParams, z, zShapeInfo, hZShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo), OPS_A(REDUCE_FLOAT_OPS));
|
2019-06-06 14:21:15 +02:00
|
|
|
nd4j::DebugHelper::checkErrorCode(stream, "execReduceScalarFloat(...) failed");
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X, typename Y>
|
2019-08-02 19:01:03 +02:00
|
|
|
_CUDA_H void ReduceFloatFunction<X,Y>::execReduceXD(dim3 launchDims, cudaStream_t *stream, int opNum, int rank, void *x, Nd4jLong *xShape, Nd4jLong *hXShapeInfo, void *extraParams, void *z, Nd4jLong *zShape, Nd4jLong *hZShapeInfo, int *dimension, int dimensionLength, void *reductionPointer, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets) {
|
|
|
|
|
|
|
|
DISPATCH_BY_OPNUM_TT(intermediateXD, PARAMS(launchDims, stream, x, xShape, hXShapeInfo, extraParams, z, zShape, hZShapeInfo, dimension, dimensionLength, reductionPointer, tadShapeInfo, tadOffsets), OPS_A(REDUCE_FLOAT_OPS));
|
2019-06-06 14:21:15 +02:00
|
|
|
DEBUG_KERNEL(stream, opNum);
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename X>
|
|
|
|
__device__ void initializeShared(X *extraParams, X **sPartials, int sMemSize) {
|
|
|
|
int sPartialsLength = sMemSize / sizeof(X);
|
|
|
|
X *sPartialsDeref = (X *) *sPartials;
|
|
|
|
for (int i = 0; i < sPartialsLength; i++)
|
|
|
|
sPartialsDeref[i] = extraParams[0];
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
|
[WIP] build time improvements (#106)
* fix pad javadoc and @see links. (#72)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* [WIP] More fixes (#73)
* special tests for ConstantTadHelper/ConstantShapeHelper
Signed-off-by: raver119 <raver119@gmail.com>
* release methods for data buffers
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary buffer Java side
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary buffer Java side
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary TadPack C++/Java side (#74)
Signed-off-by: raver119 <raver119@gmail.com>
* Zoo model TF import test updates (#75)
* argLine fix, update compression_gru comment
* updated comment for xception
* undid but commented argLine change
* updated xlnet comment
* copyright headers
* - new NDArray methods like()/ulike() (#77)
- fix for depthwise_conv2d_bp + special test
Signed-off-by: raver119 <raver119@gmail.com>
* upsampling2d fix CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* DL4J trace logging (#79)
* MLN/CG trace logging for debugging
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tiny tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* strided_slice_bp shape fn leak fix
Signed-off-by: raver119 <raver119@gmail.com>
* SameDiff fixes and naming (#78)
* remove SDVariable inplace methods
* import methods
* npe fix in OpVal
* removed SameDiff inplace ops from tests
* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything
* quick fixes
* javadoc
* SDVariable eval with placeholders
* use regex match
* better matching
* fix javadoc. (#76)
* fix javadoc.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* replace most @see with @link s.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* 4 additional tests
Signed-off-by: raver119 <raver119@gmail.com>
* Various DL4J/ND4J fixes (#81)
* #7954 Force refresh of UI when switching tabs on overview page
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8017 Concurrent modification exception (synchronize) fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8033 Don't initialize updater in middle of writing memory crash dump
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8208 Fix shape checks for ND4J int[] creator methods
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #6385 #7992 Keras import naming fixes + cleanup
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8016 Upsampling3D - add NDHWC format support
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Refactor NativeOps.h to export C functions
* Actually export functions from NativeOps.h
* Adapt the Java wrappers in ND4J generated with JavaCPP
* Create C wrappers for some of the C++ classes currently used by ND4J
* remove duplicate code in createBufferDetached. (#83)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Keras model import - updater lr fix (#84)
* Keras model import - updater lr fix
Signed-off-by: eraly <susan.eraly@gmail.com>
* Keras model import - updater lr fix, cleanup
Signed-off-by: eraly <susan.eraly@gmail.com>
* Fix functions of OpaqueVariablesSet
* SameDiff Convolution Config validation, better output methods (#82)
* Conv Config validation & tests
Signed-off-by: Ryan Nett <rnett@skymind.io>
* stackOutputs utility method
Signed-off-by: Ryan Nett <rnett@skymind.io>
* use constructor for validation, support negative kernel sizes (infered from weights)
Signed-off-by: Ryan Nett <rnett@skymind.io>
* better output methods
Signed-off-by: Ryan Nett <rnett@skymind.io>
* move output to be with fit and evaluate
Signed-off-by: Ryan Nett <rnett@skymind.io>
* fixes
Signed-off-by: Ryan Nett <rnett@skymind.io>
* more fixes
Signed-off-by: Ryan Nett <rnett@skymind.io>
* refactor duplicate code from pad methods. (#86)
* refactor duplicate code from pad methods.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* replace switch with if.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Various ND4J/DL4J fixes and improvements (#87)
* Reshape and reallocate - small fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Reshape and reallocate - small fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #6488 ElementWiseVertex broadcast support
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Constructors and broadcast supported it Transforms.max/min
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8054 ElementWiseVertex now supports broadcast inputs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8057 Nd4j.create overload dtype fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7551 ND4J Shape validation fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Numpy boolean import (#91)
* numpy bool type
Signed-off-by: raver119 <raver119@gmail.com>
* numpy bool java side
Signed-off-by: raver119 <raver119@gmail.com>
* remove create method with unused parameter. (#89)
* remove create method with unused parameter.
* removed more unused methods.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* removing more unused code.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* last removal of unused code.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* remove createSparse methods. (#92)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Various ND4J/DL4J fixes (#90)
* Deprecate Old*Op instances
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8063 #8054 Broadcast exceptions + cleanup inplace ops
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Remove bad test condition
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7993 Fix shape function issue in crop_and_resize op
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* DL4J SameDiff lambda layer fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8029 Fix for pnorm backprop math
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* createUninitializedDetached refactoring. (#94)
* wip
* update interface, add null implementations.
* Breaking one test in a weird way.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* createUninitializedDetached refactored.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* cuda build fix for issues introduced by recent refactoring
Signed-off-by: raver119 <raver119@gmail.com>
* [WIP] More of CUDA (#95)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* Implementation of hashcode cuda helper. Working edition.
* Fixed parallel test input arangements.
* Fixed tests for hashcode op.
* Fixed shape calculation for image:crop_and_resize op and test.
* NativeOps tests. Initial test suite.
* Added tests for indexReduce methods.
* Added test on execBroadcast with NDArray as dimensions.
* Added test on execBroadcastBool with NDArray as dimensions.
* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.
* Added tests for execReduce with scalar results.
* Added reduce tests for non-empty dims array.
* Added tests for reduce3.
* Added tests for execScalar.
* Added tests for execSummaryStats.
* - provide cpu/cuda code for batch_to_space
- testing it
Signed-off-by: Yurii <yurii@skymind.io>
* - remove old test for batch_to_space (had wrong format and numbers were not checked)
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed complilation errors with test.
* Added test for execTransformFloat.
* Added test for execTransformSame.
* Added test for execTransformBool.
* Added test for execTransformStrict.
* Added tests for execScalar/execScalarBool with TADs.
* Added test for flatten.
* - provide cpu/cuda code for space_to_Batch operaion
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for concat.
* comment unnecessary stuff in s_t_b
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for specialConcat.
* Added tests for memcpy/set routines.
* Fixed pullRow cuda test.
* Added pullRow test.
* Added average test.
* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)
Signed-off-by: Yurii <yurii@skymind.io>
* - debugging and fixing cuda tests in JavaInteropTests file
Signed-off-by: Yurii <yurii@skymind.io>
* - correct some tests
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for shuffle.
* Fixed ops declarations.
* Restored omp and added shuffle test.
* Added convertTypes test.
* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.
* Added sort tests.
* Added tests for execCustomOp.
* - further debuging and fixing tests terminated with crash
Signed-off-by: Yurii <yurii@skymind.io>
* Added tests for calculateOutputShapes.
* Addded Benchmarks test.
* Commented benchmark tests.
* change assertion
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for apply_sgd op. Added cpu helper for that op.
* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.
* Added test for assign broadcastable.
* Added tests for assign_bp op.
* Added tests for axpy op.
* - assign/execScalar/execTransformAny signature change
- minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed axpy op.
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* - fix tests for nativeOps::concat
Signed-off-by: Yurii <yurii@skymind.io>
* sequential transform/scalar
Signed-off-by: raver119 <raver119@gmail.com>
* allow nested parallelism
Signed-off-by: raver119 <raver119@gmail.com>
* assign_bp leak fix
Signed-off-by: raver119 <raver119@gmail.com>
* block setRNG fix
Signed-off-by: raver119 <raver119@gmail.com>
* enable parallelism by default
Signed-off-by: raver119 <raver119@gmail.com>
* enable nested parallelism by default
Signed-off-by: raver119 <raver119@gmail.com>
* Added cuda implementation for row_count helper.
* Added implementation for tnse gains op helper.
* - take into account possible situations when input arrays are empty in reduce_ cuda stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.
* Added kernel for tsne/symmetrized op heleper.
* Implementation of tsne/symmetrized op cuda helper. Working edition.
* Eliminated waste printfs.
* Added test for broadcastgradientargs op.
* host-only fallback for empty reduce float
Signed-off-by: raver119 <raver119@gmail.com>
* - some tests fixes
Signed-off-by: Yurii <yurii@skymind.io>
* - correct the rest of reduce_ stuff
Signed-off-by: Yurii <yurii@skymind.io>
* - further correction of reduce_ stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for Cbow op. Also added cuda implementation for cbow helpers.
* - improve code of stack operation for scalar case
Signed-off-by: Yurii <yurii@skymind.io>
* - provide cuda kernel for gatherND operation
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of cbow helpers with cuda kernels.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* - further correction of cuda stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Implementatation of cbow op helper with cuda kernels. Working edition.
* Skip random testing for cudablas case.
* lstmBlockCell context fix
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for ELU and ELU_BP ops.
* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.
* Added tests for neq_scalar.
* Added test for noop.
* - further work on clipbynorm_bp
Signed-off-by: Yurii <yurii@skymind.io>
* - get rid of concat op call, use instead direct concat helper call
Signed-off-by: Yurii <yurii@skymind.io>
* lstmBlockCell context fix
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for lrelu and lrelu_bp.
* Added tests for selu and selu_bp.
* Fixed lrelu derivative helpers.
* - some corrections in lstm
Signed-off-by: Yurii <yurii@skymind.io>
* operator * result shape fix
Signed-off-by: raver119 <raver119@gmail.com>
* - correct typo in lstmCell
Signed-off-by: Yurii <yurii@skymind.io>
* few tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA inverse broadcast bool fix
Signed-off-by: raver119 <raver119@gmail.com>
* disable MMAP test for CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* BooleanOp syncToDevice
Signed-off-by: raver119 <raver119@gmail.com>
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* additional data types for im2col/col2im
Signed-off-by: raver119 <raver119@gmail.com>
* Added test for firas_sparse op.
* one more RandomBuffer test excluded
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for flatten op.
* Added test for Floor op.
* bunch of tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* mmulDot tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Implemented floordiv_bp op and tests.
* Fixed scalar case with cuda implementation for bds.
* - work on cuda kernel for clip_by_norm backprop op is completed
Signed-off-by: Yurii <yurii@skymind.io>
* Eliminate cbow crach.
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminated abortion with batched nlp test.
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed shared flag initializing.
* disabled bunch of cpu workspaces tests
Signed-off-by: raver119 <raver119@gmail.com>
* scalar operators fix: missing registerSpecialUse call
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed logdet for cuda and tests.
* - correct clipBynorm_bp
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed crop_and_resize shape datatype.
* - correct some mmul tests
Signed-off-by: Yurii <yurii@skymind.io>
* build fix
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI (#97)
Signed-off-by: raver119 <raver119@gmail.com>
* temporary stack fix
Signed-off-by: raver119 <raver119@gmail.com>
* couple of legacy groups reorganized into separate compialtion units
Signed-off-by: raver119 <raver119@gmail.com>
* wrong include
Signed-off-by: raver119 <raver119@gmail.com>
* wrong include
Signed-off-by: raver119 <raver119@gmail.com>
* ReductionLoops_float split
Signed-off-by: raver119 <raver119@gmail.com>
* maximum
Signed-off-by: raver119 <raver119@gmail.com>
* some more rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* spare ifdef
Signed-off-by: raver119 <raver119@gmail.com>
* mirror pad
Signed-off-by: raver119 <raver119@gmail.com>
* - reduce_float split
- mcmodel
Signed-off-by: raver119 <raver119@gmail.com>
* bad include fix
Signed-off-by: raver119 <raver119@gmail.com>
* norelax
Signed-off-by: raver119 <raver119@gmail.com>
* norelax
Signed-off-by: raver119 <raver119@gmail.com>
* norelax
Signed-off-by: raver119 <raver119@gmail.com>
* norelax
Signed-off-by: raver119 <raver119@gmail.com>
* norelax
Signed-off-by: raver119 <raver119@gmail.com>
* norelax gone
Signed-off-by: raver119 <raver119@gmail.com>
* get back sm
Signed-off-by: raver119 <raver119@gmail.com>
* fix couple of tests for msvc
Signed-off-by: raver119 <raver119@gmail.com>
* fix couple of tests for msvc
Signed-off-by: raver119 <raver119@gmail.com>
* compress-all
Signed-off-by: raver119 <raver119@gmail.com>
* reduced arch list
Signed-off-by: raver119 <raver119@gmail.com>
* compress-all
Signed-off-by: raver119 <raver119@gmail.com>
* reduced arch list
Signed-off-by: raver119 <raver119@gmail.com>
* all compute capabilities option for tests
Signed-off-by: raver119 <raver119@gmail.com>
2019-08-07 16:49:13 +02:00
|
|
|
//BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReduceFloatFunction, , LIBND4J_TYPES, FLOAT_TYPES);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|