2404be5fe0
* libnd4j: Multinomial op #8570 first raw step of multinomial random data generator implementation Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op #8570 next step of multinomial random categories generator implementation on both cpu and cuda, need corrections and code clean up before review and testing * libnd4j: Multinomial op #8570 code clean up and fixed issues data selecting, moved from coords to tads * libnd4j: Multinomial op #8570 fixed cuda build add reference for math materials that was used for implementation * libnd4j: Multinomial op #8570 fixed several bugs, added several tests and improved cuda version. current implementation works, need testing of reproduction with the same seed * libnd4j: Multinomial op #8570 fixes and optimization after discussion in both cuda and cpu * libnd4j: Multinomial op #8570 add corrections after review, removed tads, replace 2D parallel loop by 3D Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed declaration and add tests need discussion * libnd4j: Multinomial op fix in test * libnd4j: Multinomial op corrected behavior to get reproducible results, fixed issue in uniform value getting, tests added, need cuda review and cuda testing Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed indexing on uniform calculation Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op some corrections in max min declaration Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed index calculation, added rewind, corrected input declaration, added stats tests, both cuda and cpu. cuda need testing * libnd4j: Multinomial op fixed bugs on cuda nad cpu. need review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op corrected tests to handle different orders Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op some improvements after code review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op more corrections after review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed seed usage, update tests, fixed cuda based on comments, fixed bug of rewind, removed one behavior, minor corrections. Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op minor corrections Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op rise the bound of fluctuation for random cases Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op modified operation inputs and update implementation and tests on both cpu and cuda * libnd4j: Multinomial op corrected data types according ops.proto Co-authored-by: raver119 <raver119@gmail.com> |
||
---|---|---|
.. | ||
blas | ||
cmake | ||
include | ||
minifier | ||
msi | ||
packages | ||
profile | ||
server | ||
tests_cpu | ||
.gitignore | ||
AddingNewOps.md | ||
CMakeLists.txt | ||
CMakeLists.txt.cpu_features.in | ||
CMakeLists.txt.in | ||
CMakeLists.txt.mkldnn.in | ||
CMakeSettings.json | ||
LICENSE | ||
README.md | ||
RaspberryPi.md | ||
UnderstandingGraph.md | ||
assembly-cuda.xml | ||
assembly.xml | ||
buildnativeoperations.sh | ||
cibuild.sh | ||
development.md | ||
flatproto.txt | ||
iOS.md | ||
linuxOnPower.md | ||
macOSx10 (CPU only).md | ||
pom.xml | ||
proto.sh | ||
setuposx.sh | ||
windows.md |
README.md
LibND4J
Native operations for nd4j. Build using cmake
Prerequisites
- GCC 4.9+
- CUDA 8.0 or 9.0 (if desired)
- CMake 3.8 (as of Nov 2017, in near future will require 3.9)
Additional build arguments
There's few additional arguments for buildnativeoperations.sh
script you could use:
-a XXXXXXXX// shortcut for -march/-mtune, i.e. -a native
-b release OR -b debug // enables/desables debug builds. release is considered by default
-j XX // this argument defines how many threads will be used to binaries on your box. i.e. -j 8
-cc XX// CUDA-only argument, builds only binaries for target GPU architecture. use this for fast builds
You can find the compute capability for your card on the NVIDIA website here.
For example, a GTX 1080 has compute capability 6.1, for which you would use -cc 61
(note no decimal point).
OS Specific Requirements
Android
Download the NDK, extract it somewhere, and execute the following commands, replacing android-xxx
with either android-arm
or android-x86
:
git clone https://github.com/deeplearning4j/libnd4j
git clone https://github.com/deeplearning4j/nd4j
export ANDROID_NDK=/path/to/android-ndk/
cd libnd4j
bash buildnativeoperations.sh -platform android-xxx
cd ../nd4j
mvn clean install -Djavacpp.platform=android-xxx -DskipTests -pl '!:nd4j-cuda-9.0,!:nd4j-cuda-9.0-platform,!:nd4j-tests'
OSX
Run ./setuposx.sh (Please ensure you have brew installed)
Linux
Depends on the distro - ask in the earlyadopters channel for specifics on distro
Ubuntu Linux 15.10
wget http://developer.download.nvidia.com/compute/cuda/7.5/Prod/local_installers/cuda-repo-ubuntu1504-7-5-local_7.5-18_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1504-7-5-local_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install cuda
sudo apt-get install cmake
sudo apt-get install gcc-4.9
sudo apt-get install g++-4.9
sudo apt-get install git
git clone https://github.com/deeplearning4j/libnd4j
cd libnd4j/
export LIBND4J_HOME=~/libnd4j/
sudo rm /usr/bin/gcc
sudo rm /usr/bin/g++
sudo ln -s /usr/bin/gcc-4.9 /usr/bin/gcc
sudo ln -s /usr/bin/g++-4.9 /usr/bin/g++
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
Ubuntu Linux 16.04
sudo apt install cmake
sudo apt install nvidia-cuda-dev nvidia-cuda-toolkit nvidia-361
export TRICK_NVCC=YES
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
The standard development headers are needed.
CentOS 6
yum install centos-release-scl-rh epel-release
yum install devtoolset-3-toolchain maven30 cmake3 git
scl enable devtoolset-3 maven30 bash
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
Windows
See Windows.md
Setup for All OS
-
Set a LIBND4J_HOME as an environment variable to the libnd4j folder you've obtained from GIT
- Note: this is required for building nd4j as well.
-
Setup cpu followed by gpu, run the following on the command line:
-
For standard builds:
./buildnativeoperations.sh ./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
-
For Debug builds:
./buildnativeoperations.sh blas -b debug ./buildnativeoperations.sh blas -c cuda -сс YOUR_DEVICE_ARCH -b debug
-
For release builds (default):
./buildnativeoperations.sh ./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
-
OpenMP support
OpenMP 4.0+ should be used to compile libnd4j. However, this shouldn't be any trouble, since OpenMP 4 was released in 2015 and should be available on all major platforms.
Linking with MKL
We can link with MKL either at build time, or at runtime with binaries initially linked with another BLAS implementation such as OpenBLAS. In either case, simply add the path containing libmkl_rt.so
(or mkl_rt.dll
on Windows), say /path/to/intel64/lib/
, to the LD_LIBRARY_PATH
environment variable on Linux (or PATH
on Windows), and build or run your Java application as usual. If you get an error message like undefined symbol: omp_get_num_procs
, it probably means that libiomp5.so
, libiomp5.dylib
, or libiomp5md.dll
is not present on your system. In that case though, it is still possible to use the GNU version of OpenMP by setting these environment variables on Linux, for example:
export MKL_THREADING_LAYER=GNU
export LD_PRELOAD=/usr/lib64/libgomp.so.1
##Troubleshooting MKL
Sometimes the above steps might not be all you need to do. Another additional step might be the need to add:
export LD_LIBRARY_PATH=/opt/intel/lib/intel64/:/opt/intel/mkl/lib/intel64
This ensures that mkl will be found first and liked to.
Packaging
If on Ubuntu (14.04 or above) or CentOS (6 or above), this repository is also set to create packages for your distribution. Let's assume you have built:
- for the cpu, your command-line was
./buildnativeoperations.sh ...
:
cd blasbuild/cpu
make package
- for the gpu, your command-line was
./buildnativeoperations.sh -c cuda ...
:
cd blasbuild/cuda
make package
Uploading package to Bintray
The package upload script is in packaging. The upload command for an rpm built for cpu is:
./packages/push_to_bintray.sh myAPIUser myAPIKey deeplearning4j blasbuild/cpu/libnd4j-0.8.0.fc7.3.1611.x86_64.rpm https://github.com/deeplearning4j
The upload command for a deb package built for cuda is:
./packages/push_to_bintray.sh myAPIUser myAPIKey deeplearning4j blasbuild/cuda/libnd4j-0.8.0.fc7.3.1611.x86_64.deb https://github.com/deeplearning4j
Running tests
Tests are written with gtest, run using cmake. Tests are currently under tests_cpu/
There are 2 directories for running tests:
1. libnd4j_tests: These are older legacy ops tests.
2. layers_tests: This covers the newer graph operations and ops associated with samediff.
For running the tests, we currently use cmake or CLion to run the tests.
To run tests using CUDA backend it's pretty much similar process:
1. ./buildnativeoperations.h -c cuda -cc <YOUR_ARCH> -b debug -t -j <NUMBER_OF_CORES>
2. ./blasbuild/cuda/tests_cpu/layers_tests/runtests (.exe on Windows)