cavis/libnd4j/include/ops/declarable/helpers/cpu/random.cpp

212 lines
9.0 KiB
C++
Raw Normal View History

/*******************************************************************************
* Copyright (c) 2019 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author sgazeos@gmail.com
//
#include <ops/declarable/helpers/random.h>
//#include <vector>
#include <memory>
//#include <graph/Context.h>
#include <helpers/ShapeUtils.h>
#include <helpers/RandomLauncher.h>
Oleh multinomial (#163) * libnd4j: Multinomial op #8570 first raw step of multinomial random data generator implementation Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op #8570 next step of multinomial random categories generator implementation on both cpu and cuda, need corrections and code clean up before review and testing * libnd4j: Multinomial op #8570 code clean up and fixed issues data selecting, moved from coords to tads * libnd4j: Multinomial op #8570 fixed cuda build add reference for math materials that was used for implementation * libnd4j: Multinomial op #8570 fixed several bugs, added several tests and improved cuda version. current implementation works, need testing of reproduction with the same seed * libnd4j: Multinomial op #8570 fixes and optimization after discussion in both cuda and cpu * libnd4j: Multinomial op #8570 add corrections after review, removed tads, replace 2D parallel loop by 3D Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed declaration and add tests need discussion * libnd4j: Multinomial op fix in test * libnd4j: Multinomial op corrected behavior to get reproducible results, fixed issue in uniform value getting, tests added, need cuda review and cuda testing Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed indexing on uniform calculation Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op some corrections in max min declaration Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed index calculation, added rewind, corrected input declaration, added stats tests, both cuda and cpu. cuda need testing * libnd4j: Multinomial op fixed bugs on cuda nad cpu. need review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op corrected tests to handle different orders Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op some improvements after code review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op more corrections after review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed seed usage, update tests, fixed cuda based on comments, fixed bug of rewind, removed one behavior, minor corrections. Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op minor corrections Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op rise the bound of fluctuation for random cases Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op modified operation inputs and update implementation and tests on both cpu and cuda * libnd4j: Multinomial op corrected data types according ops.proto Co-authored-by: raver119 <raver119@gmail.com>
2020-01-06 20:35:05 +01:00
#include <execution/Threads.h>
#include <helpers/ConstantTadHelper.h>
namespace sd {
namespace ops {
namespace helpers {
template <typename T>
void fillRandomGamma_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output) {
Nd4jLong* broadcasted = nullptr;
if (beta != nullptr)
ShapeUtils::evalBroadcastShapeInfo(*alpha, *beta, true, broadcasted, context->getWorkspace());
else
broadcasted = alpha->shapeInfo();
auto step = shape::length(broadcasted);
auto shift = output->lengthOf() / step;
auto copyAlpha = alpha;
auto copyBeta = beta;
if (beta != nullptr) {
NDArray alphaBroadcasted(broadcasted, alpha->dataType(), false, context);
NDArray betaBroadcasted(broadcasted, beta->dataType(), false, context);
Shyrma temp (#131) * - specifying template instantiation for certain types in float16 and bloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - polishing bfloat16 and float16 member functions template specialization Signed-off-by: Yurii <iuriish@yahoo.com> * - rewrite and overload array +-*/ scalar and scalar +-*/ arr in NDAray class Signed-off-by: Yurii <iuriish@yahoo.com> * - make corrections which have to do with and rvalue lvalue conversions Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantic in NDArray operators array +-/* array Signed-off-by: Yurii <iuriish@yahoo.com> * float16/bfloat16 tweaks Signed-off-by: raver119 <raver119@gmail.com> * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * - make float16 and bfloat16 to compile successfully on cuda Signed-off-by: Yurii <iuriish@yahoo.com> * - do not use resources of view-like arrays when move semantics is applied Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of pointers in signatures NDArray methods 1 Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::dup method Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::reduceAlongDimension method Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyIndexReduce and applyTrueBroadcast methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyReduce3 and varianceAlongDimension methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tensorsAlongDimension and diagonal methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::allTensorsAlongDimension Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduceAlongDimension 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyPairwiseTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTrueBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyScalar and applyScalarArr Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::lambda methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduce3 methods 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of following NDArray methods: add/sub/mul/div row/column and fillAsTriangular Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tileToShape methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::isShapeSameStrict method Signed-off-by: Yurii <iuriish@yahoo.com> * minor corrections in tests Signed-off-by: Yurii <iuriish@yahoo.com> * - replace reduce op in batchnorm mkldnn Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit templates instantiations for operator+(NDArray&&. const scalar) Signed-off-by: Yurii <iuriish@yahoo.com> * - corrections of casts in float16/bfloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantics in following NDArray methods: transform, applyTrueBroadcast, transpose, reshape, permute Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of input array A duplicate in svd cuda op Signed-off-by: Yurii <iuriish@yahoo.com> * - avoid available bug in svd cuda API Signed-off-by: Yurii <iuriish@yahoo.com> * - add temporary global memory buffer in svd cuda when calcUV = false and m != n Signed-off-by: Yurii <iuriish@yahoo.com> * - remove test with blfoat16 type for betainC Signed-off-by: Yurii <iuriish@yahoo.com> * - resolve conflicts after master has been merged in Signed-off-by: Yurii <iuriish@yahoo.com> * - changed type of affected input array in fused_batch_norm Signed-off-by: Yurii <iuriish@yahoo.com> * - add several explicit type castings Signed-off-by: Yurii <iuriish@yahoo.com> * - add ND4J_EXPORT to operators Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit template types in instantiations of template arithm operators of NDArray class Signed-off-by: Yurii <iuriish@yahoo.com> * - one more test fix Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com>
2019-12-20 20:35:39 +01:00
copyAlpha = new NDArray(alphaBroadcasted.applyTrueBroadcast(BroadcastOpsTuple::Assign(), *alpha));
copyBeta = new NDArray(betaBroadcasted.applyTrueBroadcast(BroadcastOpsTuple::Assign(), *beta));
}
// bool directAlpha = alpha->ews() == 1 && alpha->ordering() == 'c';
bool directOutput = output->ews() == 1 && output->ordering() == 'c';
T* outputBuf = output->dataBuffer()->primaryAsT<T>();
PRAGMA_OMP_PARALLEL_FOR
for (Nd4jLong k = 0; k < shift; k++) {
auto pos = k * step;
auto u = rng.relativeT<T>(k, 0., 1.);
for (Nd4jLong e = 0; e < step; e++)
if (directOutput) {
outputBuf[pos + e] = math::nd4j_igamma<T, T, T>(copyAlpha->t<T>(e),
beta != nullptr ? copyBeta->t<T>(e) * u : u);
}
else {
output->t<T>(pos + e) = math::nd4j_igamma<T, T, T>(copyAlpha->t<T>(e),
beta != nullptr ? copyBeta->t<T>(e) * u : u);
}
}
if (beta != nullptr) {
delete copyAlpha;
delete copyBeta;
//delete broadcasted;
}
}
void fillRandomGamma(LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output) {
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomGamma_, (context, rng, alpha, beta, output), FLOAT_NATIVE);
}
BUILD_SINGLE_TEMPLATE(template void fillRandomGamma_, (LaunchContext* context,
graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output), FLOAT_NATIVE);
/*
* algorithm Poisson generator based upon the inversion by sequential search:[48]:505
init:
Let x 0, p eλ, s p.
Generate uniform random number u in [0,1].
while u > s do:
x x + 1.
p p * λ / x.
s s + p.
return x.
* */
template <typename T>
void fillRandomPoisson_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output) {
auto shift = output->lengthOf() / lambda->lengthOf();
auto step = lambda->lengthOf();
T* lambdaBuf = lambda->dataBuffer()->primaryAsT<T>();
T* outputBuf = output->dataBuffer()->primaryAsT<T>();
bool directLa = lambda->ews() == 1 && lambda->ordering() == 'c';
bool directOut = output->ews() == 1 && output->ordering() == 'c';
PRAGMA_OMP_PARALLEL_FOR
for (Nd4jLong k = 0; k < shift; k++) {
auto pos = k * step;
auto u = rng.relativeT<T>(k, 0., 1.);
for (Nd4jLong e = 0; e < step; e++) {
auto p = math::nd4j_exp<T, T>(-lambda->t<T>(e));
auto s = p;
auto x = T(0.f);
while (u > s) {
x += 1.f;
p *= directLa?lambdaBuf[e]/x:lambda->t<T>(e) / x;
s += p;
}
if (directOut)
outputBuf[pos + e] = x;
else
output->t<T>(pos + e) = x;
}
}
}
void fillRandomPoisson(LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output) {
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomPoisson_, (context, rng, lambda, output), FLOAT_NATIVE);
}
BUILD_SINGLE_TEMPLATE(template void fillRandomPoisson_, (LaunchContext* context,
graph::RandomGenerator& rng, NDArray* lambda, NDArray* output), FLOAT_TYPES);
template <typename T>
void fillRandomUniform_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* min, NDArray* max, NDArray* output) {
T minVal = T(0);
T maxVal = DataTypeUtils::max<T>();
if (min)
minVal = min->t<T>(0);
if (max)
maxVal = max->t<T>(0);
if (output->isR())
RandomLauncher::fillUniform(context, rng, output, minVal, maxVal);
else {
PRAGMA_OMP_PARALLEL_FOR
for (Nd4jLong i = 0; i < output->lengthOf(); i++) {
output->t<T>(i) = rng.relativeT<T>(i, minVal, maxVal);
}
}
}
void fillRandomUniform(LaunchContext* context, graph::RandomGenerator& rng, NDArray* min, NDArray* max, NDArray* output) {
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomUniform_, (context, rng, min, max, output), NUMERIC_TYPES);
}
Oleh multinomial (#163) * libnd4j: Multinomial op #8570 first raw step of multinomial random data generator implementation Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op #8570 next step of multinomial random categories generator implementation on both cpu and cuda, need corrections and code clean up before review and testing * libnd4j: Multinomial op #8570 code clean up and fixed issues data selecting, moved from coords to tads * libnd4j: Multinomial op #8570 fixed cuda build add reference for math materials that was used for implementation * libnd4j: Multinomial op #8570 fixed several bugs, added several tests and improved cuda version. current implementation works, need testing of reproduction with the same seed * libnd4j: Multinomial op #8570 fixes and optimization after discussion in both cuda and cpu * libnd4j: Multinomial op #8570 add corrections after review, removed tads, replace 2D parallel loop by 3D Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed declaration and add tests need discussion * libnd4j: Multinomial op fix in test * libnd4j: Multinomial op corrected behavior to get reproducible results, fixed issue in uniform value getting, tests added, need cuda review and cuda testing Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed indexing on uniform calculation Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op some corrections in max min declaration Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed index calculation, added rewind, corrected input declaration, added stats tests, both cuda and cpu. cuda need testing * libnd4j: Multinomial op fixed bugs on cuda nad cpu. need review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op corrected tests to handle different orders Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op some improvements after code review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op more corrections after review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed seed usage, update tests, fixed cuda based on comments, fixed bug of rewind, removed one behavior, minor corrections. Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op minor corrections Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op rise the bound of fluctuation for random cases Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op modified operation inputs and update implementation and tests on both cpu and cuda * libnd4j: Multinomial op corrected data types according ops.proto Co-authored-by: raver119 <raver119@gmail.com>
2020-01-06 20:35:05 +01:00
// used https://en.wikipedia.org/wiki/Categorical_distribution
// methods: gumbel trick + softmax + argmax
template <typename Tx, typename Tz>
void fillRandomMultiNomial_(LaunchContext* context, graph::RandomGenerator& rng, NDArray& input, NDArray& output, const Nd4jLong numOfSamples, const int dimC) {
const Tx* x = input.bufferAsT<Tx>();
Tz* z = output.bufferAsT<Tz>();
Tx minVal = DataTypeUtils::min<Tx>();
Tx maxVal = 1.0;
auto dimA = (0 == dimC) ? 1 : 0;
const Nd4jLong batchValue = output.sizeAt(dimC);
const Nd4jLong numOfClassX = input.sizeAt(dimA);
const Nd4jLong zDimAstride = output.stridesOf()[dimA];
const Nd4jLong xDimAstride = input.stridesOf()[dimA];
const Nd4jLong zDimCstride = output.stridesOf()[dimC];
const Nd4jLong xDimCstride = input.stridesOf()[dimC];
auto func = PRAGMA_THREADS_FOR_2D{
for (auto nBatchIndex = start_x; nBatchIndex < stop_x; nBatchIndex += inc_x) {
for (auto nSampleIndexInBatch = start_y; nSampleIndexInBatch < stop_y; nSampleIndexInBatch += inc_y) {
const Tx* xTad = x + (nBatchIndex * xDimCstride);
Tz* zTad = z + (nBatchIndex * zDimCstride);
Tz& arg = zTad[nSampleIndexInBatch * zDimAstride];
Tx Max = -minVal;
auto nSamplesPerBatch = nBatchIndex * numOfClassX * numOfSamples;
auto nClassesPerSample = nSampleIndexInBatch * numOfClassX;
for (Nd4jLong nClass = 0; nClass < numOfClassX; nClass += 1) {
Oleh multinomial (#163) * libnd4j: Multinomial op #8570 first raw step of multinomial random data generator implementation Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op #8570 next step of multinomial random categories generator implementation on both cpu and cuda, need corrections and code clean up before review and testing * libnd4j: Multinomial op #8570 code clean up and fixed issues data selecting, moved from coords to tads * libnd4j: Multinomial op #8570 fixed cuda build add reference for math materials that was used for implementation * libnd4j: Multinomial op #8570 fixed several bugs, added several tests and improved cuda version. current implementation works, need testing of reproduction with the same seed * libnd4j: Multinomial op #8570 fixes and optimization after discussion in both cuda and cpu * libnd4j: Multinomial op #8570 add corrections after review, removed tads, replace 2D parallel loop by 3D Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed declaration and add tests need discussion * libnd4j: Multinomial op fix in test * libnd4j: Multinomial op corrected behavior to get reproducible results, fixed issue in uniform value getting, tests added, need cuda review and cuda testing Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed indexing on uniform calculation Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op some corrections in max min declaration Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed index calculation, added rewind, corrected input declaration, added stats tests, both cuda and cpu. cuda need testing * libnd4j: Multinomial op fixed bugs on cuda nad cpu. need review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op corrected tests to handle different orders Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op some improvements after code review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op more corrections after review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed seed usage, update tests, fixed cuda based on comments, fixed bug of rewind, removed one behavior, minor corrections. Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op minor corrections Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op rise the bound of fluctuation for random cases Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op modified operation inputs and update implementation and tests on both cpu and cuda * libnd4j: Multinomial op corrected data types according ops.proto Co-authored-by: raver119 <raver119@gmail.com>
2020-01-06 20:35:05 +01:00
auto nIndex = nSamplesPerBatch + nClassesPerSample + nClass;
auto unifornLog = sd::math::nd4j_log<Tx, Tx>(-sd::math::nd4j_log<Tx, Tx>(rng.relativeT<Tx>(nIndex, minVal, maxVal)));
Oleh multinomial (#163) * libnd4j: Multinomial op #8570 first raw step of multinomial random data generator implementation Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op #8570 next step of multinomial random categories generator implementation on both cpu and cuda, need corrections and code clean up before review and testing * libnd4j: Multinomial op #8570 code clean up and fixed issues data selecting, moved from coords to tads * libnd4j: Multinomial op #8570 fixed cuda build add reference for math materials that was used for implementation * libnd4j: Multinomial op #8570 fixed several bugs, added several tests and improved cuda version. current implementation works, need testing of reproduction with the same seed * libnd4j: Multinomial op #8570 fixes and optimization after discussion in both cuda and cpu * libnd4j: Multinomial op #8570 add corrections after review, removed tads, replace 2D parallel loop by 3D Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed declaration and add tests need discussion * libnd4j: Multinomial op fix in test * libnd4j: Multinomial op corrected behavior to get reproducible results, fixed issue in uniform value getting, tests added, need cuda review and cuda testing Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed indexing on uniform calculation Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op some corrections in max min declaration Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed index calculation, added rewind, corrected input declaration, added stats tests, both cuda and cpu. cuda need testing * libnd4j: Multinomial op fixed bugs on cuda nad cpu. need review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op corrected tests to handle different orders Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op some improvements after code review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op more corrections after review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed seed usage, update tests, fixed cuda based on comments, fixed bug of rewind, removed one behavior, minor corrections. Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op minor corrections Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op rise the bound of fluctuation for random cases Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op modified operation inputs and update implementation and tests on both cpu and cuda * libnd4j: Multinomial op corrected data types according ops.proto Co-authored-by: raver119 <raver119@gmail.com>
2020-01-06 20:35:05 +01:00
Tx tValue = (xTad[nClass * xDimAstride] - unifornLog);
if (tValue > Max) {
Max = tValue;
arg = nClass;
}
}
}
}
};
samediff::Threads::parallel_for(func, 0, batchValue, 1, 0, numOfSamples, 1);
Oleh multinomial (#163) * libnd4j: Multinomial op #8570 first raw step of multinomial random data generator implementation Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op #8570 next step of multinomial random categories generator implementation on both cpu and cuda, need corrections and code clean up before review and testing * libnd4j: Multinomial op #8570 code clean up and fixed issues data selecting, moved from coords to tads * libnd4j: Multinomial op #8570 fixed cuda build add reference for math materials that was used for implementation * libnd4j: Multinomial op #8570 fixed several bugs, added several tests and improved cuda version. current implementation works, need testing of reproduction with the same seed * libnd4j: Multinomial op #8570 fixes and optimization after discussion in both cuda and cpu * libnd4j: Multinomial op #8570 add corrections after review, removed tads, replace 2D parallel loop by 3D Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed declaration and add tests need discussion * libnd4j: Multinomial op fix in test * libnd4j: Multinomial op corrected behavior to get reproducible results, fixed issue in uniform value getting, tests added, need cuda review and cuda testing Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed indexing on uniform calculation Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op some corrections in max min declaration Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed index calculation, added rewind, corrected input declaration, added stats tests, both cuda and cpu. cuda need testing * libnd4j: Multinomial op fixed bugs on cuda nad cpu. need review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op corrected tests to handle different orders Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op some improvements after code review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op more corrections after review Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op fixed seed usage, update tests, fixed cuda based on comments, fixed bug of rewind, removed one behavior, minor corrections. Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op minor corrections Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op rise the bound of fluctuation for random cases Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j: Multinomial op modified operation inputs and update implementation and tests on both cpu and cuda * libnd4j: Multinomial op corrected data types according ops.proto Co-authored-by: raver119 <raver119@gmail.com>
2020-01-06 20:35:05 +01:00
rng.rewindH(output.lengthOf()*numOfClassX);
return;
}
void fillRandomMultiNomial(LaunchContext* context, graph::RandomGenerator& rng, NDArray& input, NDArray& output, const Nd4jLong numOfSamples, const int dimC) {
BUILD_DOUBLE_SELECTOR(input.dataType(), output.dataType(), fillRandomMultiNomial_, (context, rng, input, output, numOfSamples, dimC), FLOAT_TYPES, INDEXING_TYPES);
}
}
}
}