2019-11-04 14:42:28 +01:00
|
|
|
|
/*******************************************************************************
|
2019-11-06 11:49:27 +01:00
|
|
|
|
* Copyright (c) 2019 Konduit K.K.
|
2019-11-04 14:42:28 +01:00
|
|
|
|
*
|
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
|
*
|
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
|
* under the License.
|
|
|
|
|
*
|
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// @author sgazeos@gmail.com
|
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
#include <ops/declarable/helpers/random.h>
|
|
|
|
|
//#include <vector>
|
|
|
|
|
#include <memory>
|
|
|
|
|
//#include <graph/Context.h>
|
|
|
|
|
#include <ShapeUtils.h>
|
2019-11-06 11:49:27 +01:00
|
|
|
|
#include <helpers/RandomLauncher.h>
|
Oleh multinomial (#163)
* libnd4j: Multinomial op #8570 first raw step of multinomial random data generator implementation
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op #8570 next step of multinomial random categories generator implementation on both cpu and cuda, need corrections and code clean up before review and testing
* libnd4j: Multinomial op #8570 code clean up and fixed issues data selecting, moved from coords to tads
* libnd4j: Multinomial op #8570 fixed cuda build add reference for math materials that was used for implementation
* libnd4j: Multinomial op #8570 fixed several bugs, added several tests and improved cuda version. current implementation works, need testing of reproduction with the same seed
* libnd4j: Multinomial op #8570 fixes and optimization after discussion in both cuda and cpu
* libnd4j: Multinomial op #8570 add corrections after review, removed tads, replace 2D parallel loop by 3D
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed declaration and add tests need discussion
* libnd4j: Multinomial op fix in test
* libnd4j: Multinomial op corrected behavior to get reproducible results, fixed issue in uniform value getting, tests added, need cuda review and cuda testing
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed indexing on uniform calculation
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op some corrections in max min declaration
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed index calculation, added rewind, corrected input declaration, added stats tests, both cuda and cpu. cuda need testing
* libnd4j: Multinomial op fixed bugs on cuda nad cpu. need review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op corrected tests to handle different orders
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op some improvements after code review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op more corrections after review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed seed usage, update tests, fixed cuda based on comments, fixed bug of rewind, removed one behavior, minor corrections.
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op minor corrections
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op rise the bound of fluctuation for random cases
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op modified operation inputs and update implementation and tests on both cpu and cuda
* libnd4j: Multinomial op corrected data types according ops.proto
Co-authored-by: raver119 <raver119@gmail.com>
2020-01-06 20:35:05 +01:00
|
|
|
|
#include <execution/Threads.h>
|
|
|
|
|
#include <helpers/ConstantTadHelper.h>
|
2019-11-04 14:42:28 +01:00
|
|
|
|
|
|
|
|
|
namespace nd4j {
|
|
|
|
|
namespace ops {
|
|
|
|
|
namespace helpers {
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
void fillRandomGamma_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output) {
|
|
|
|
|
|
|
|
|
|
Nd4jLong* broadcasted = nullptr;
|
|
|
|
|
if (beta != nullptr)
|
|
|
|
|
ShapeUtils::evalBroadcastShapeInfo(*alpha, *beta, true, broadcasted, context->getWorkspace());
|
|
|
|
|
else
|
|
|
|
|
broadcasted = alpha->shapeInfo();
|
|
|
|
|
auto step = shape::length(broadcasted);
|
|
|
|
|
auto shift = output->lengthOf() / step;
|
|
|
|
|
|
|
|
|
|
auto copyAlpha = alpha;
|
|
|
|
|
auto copyBeta = beta;
|
|
|
|
|
if (beta != nullptr) {
|
|
|
|
|
NDArray alphaBroadcasted(broadcasted, alpha->dataType(), false, context);
|
|
|
|
|
NDArray betaBroadcasted(broadcasted, beta->dataType(), false, context);
|
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
|
copyAlpha = new NDArray(alphaBroadcasted.applyTrueBroadcast(BroadcastOpsTuple::Assign(), *alpha));
|
|
|
|
|
copyBeta = new NDArray(betaBroadcasted.applyTrueBroadcast(BroadcastOpsTuple::Assign(), *beta));
|
2019-11-04 14:42:28 +01:00
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
// bool directAlpha = alpha->ews() == 1 && alpha->ordering() == 'c';
|
|
|
|
|
bool directOutput = output->ews() == 1 && output->ordering() == 'c';
|
|
|
|
|
T* outputBuf = output->dataBuffer()->primaryAsT<T>();
|
|
|
|
|
|
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
2020-02-26 19:12:19 +01:00
|
|
|
|
for (Nd4jLong k = 0; k < shift; k++) {
|
2019-11-04 14:42:28 +01:00
|
|
|
|
auto pos = k * step;
|
|
|
|
|
auto u = rng.relativeT<T>(k, 0., 1.);
|
2020-02-26 19:12:19 +01:00
|
|
|
|
for (Nd4jLong e = 0; e < step; e++)
|
2019-11-04 14:42:28 +01:00
|
|
|
|
if (directOutput) {
|
|
|
|
|
outputBuf[pos + e] = math::nd4j_igamma<T, T, T>(copyAlpha->t<T>(e),
|
|
|
|
|
beta != nullptr ? copyBeta->t<T>(e) * u : u);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
output->t<T>(pos + e) = math::nd4j_igamma<T, T, T>(copyAlpha->t<T>(e),
|
|
|
|
|
beta != nullptr ? copyBeta->t<T>(e) * u : u);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (beta != nullptr) {
|
|
|
|
|
delete copyAlpha;
|
|
|
|
|
delete copyBeta;
|
|
|
|
|
//delete broadcasted;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void fillRandomGamma(LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output) {
|
|
|
|
|
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomGamma_, (context, rng, alpha, beta, output), FLOAT_NATIVE);
|
|
|
|
|
}
|
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void fillRandomGamma_, (LaunchContext* context,
|
|
|
|
|
graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output), FLOAT_NATIVE);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* algorithm Poisson generator based upon the inversion by sequential search:[48]:505
|
|
|
|
|
init:
|
|
|
|
|
Let x ← 0, p ← e−λ, s ← p.
|
|
|
|
|
Generate uniform random number u in [0,1].
|
|
|
|
|
while u > s do:
|
|
|
|
|
x ← x + 1.
|
|
|
|
|
p ← p * λ / x.
|
|
|
|
|
s ← s + p.
|
|
|
|
|
return x.
|
|
|
|
|
* */
|
|
|
|
|
template <typename T>
|
|
|
|
|
void fillRandomPoisson_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output) {
|
|
|
|
|
auto shift = output->lengthOf() / lambda->lengthOf();
|
|
|
|
|
auto step = lambda->lengthOf();
|
|
|
|
|
T* lambdaBuf = lambda->dataBuffer()->primaryAsT<T>();
|
|
|
|
|
T* outputBuf = output->dataBuffer()->primaryAsT<T>();
|
|
|
|
|
bool directLa = lambda->ews() == 1 && lambda->ordering() == 'c';
|
|
|
|
|
bool directOut = output->ews() == 1 && output->ordering() == 'c';
|
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
2020-02-26 19:12:19 +01:00
|
|
|
|
for (Nd4jLong k = 0; k < shift; k++) {
|
2019-11-04 14:42:28 +01:00
|
|
|
|
auto pos = k * step;
|
|
|
|
|
auto u = rng.relativeT<T>(k, 0., 1.);
|
2020-02-26 19:12:19 +01:00
|
|
|
|
for (Nd4jLong e = 0; e < step; e++) {
|
2019-11-04 14:42:28 +01:00
|
|
|
|
auto p = math::nd4j_exp<T, T>(-lambda->t<T>(e));
|
|
|
|
|
auto s = p;
|
|
|
|
|
auto x = T(0.f);
|
|
|
|
|
while (u > s) {
|
|
|
|
|
x += 1.f;
|
|
|
|
|
p *= directLa?lambdaBuf[e]/x:lambda->t<T>(e) / x;
|
|
|
|
|
s += p;
|
|
|
|
|
}
|
|
|
|
|
if (directOut)
|
|
|
|
|
outputBuf[pos + e] = x;
|
|
|
|
|
else
|
|
|
|
|
output->t<T>(pos + e) = x;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void fillRandomPoisson(LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output) {
|
|
|
|
|
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomPoisson_, (context, rng, lambda, output), FLOAT_NATIVE);
|
|
|
|
|
}
|
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void fillRandomPoisson_, (LaunchContext* context,
|
|
|
|
|
graph::RandomGenerator& rng, NDArray* lambda, NDArray* output), FLOAT_TYPES);
|
|
|
|
|
|
2019-11-06 11:49:27 +01:00
|
|
|
|
template <typename T>
|
|
|
|
|
void fillRandomUniform_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* min, NDArray* max, NDArray* output) {
|
2019-11-07 15:09:47 +01:00
|
|
|
|
T minVal = T(0);
|
2019-11-08 06:49:41 +01:00
|
|
|
|
T maxVal = DataTypeUtils::max<T>();
|
2019-11-07 15:09:47 +01:00
|
|
|
|
if (min)
|
|
|
|
|
minVal = min->t<T>(0);
|
|
|
|
|
if (max)
|
|
|
|
|
maxVal = max->t<T>(0);
|
2019-11-06 11:49:27 +01:00
|
|
|
|
|
|
|
|
|
if (output->isR())
|
|
|
|
|
RandomLauncher::fillUniform(context, rng, output, minVal, maxVal);
|
|
|
|
|
else {
|
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
2020-02-26 19:12:19 +01:00
|
|
|
|
for (Nd4jLong i = 0; i < output->lengthOf(); i++) {
|
2019-11-06 11:49:27 +01:00
|
|
|
|
output->t<T>(i) = rng.relativeT<T>(i, minVal, maxVal);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void fillRandomUniform(LaunchContext* context, graph::RandomGenerator& rng, NDArray* min, NDArray* max, NDArray* output) {
|
|
|
|
|
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomUniform_, (context, rng, min, max, output), NUMERIC_TYPES);
|
|
|
|
|
}
|
Oleh multinomial (#163)
* libnd4j: Multinomial op #8570 first raw step of multinomial random data generator implementation
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op #8570 next step of multinomial random categories generator implementation on both cpu and cuda, need corrections and code clean up before review and testing
* libnd4j: Multinomial op #8570 code clean up and fixed issues data selecting, moved from coords to tads
* libnd4j: Multinomial op #8570 fixed cuda build add reference for math materials that was used for implementation
* libnd4j: Multinomial op #8570 fixed several bugs, added several tests and improved cuda version. current implementation works, need testing of reproduction with the same seed
* libnd4j: Multinomial op #8570 fixes and optimization after discussion in both cuda and cpu
* libnd4j: Multinomial op #8570 add corrections after review, removed tads, replace 2D parallel loop by 3D
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed declaration and add tests need discussion
* libnd4j: Multinomial op fix in test
* libnd4j: Multinomial op corrected behavior to get reproducible results, fixed issue in uniform value getting, tests added, need cuda review and cuda testing
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed indexing on uniform calculation
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op some corrections in max min declaration
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed index calculation, added rewind, corrected input declaration, added stats tests, both cuda and cpu. cuda need testing
* libnd4j: Multinomial op fixed bugs on cuda nad cpu. need review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op corrected tests to handle different orders
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op some improvements after code review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op more corrections after review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed seed usage, update tests, fixed cuda based on comments, fixed bug of rewind, removed one behavior, minor corrections.
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op minor corrections
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op rise the bound of fluctuation for random cases
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op modified operation inputs and update implementation and tests on both cpu and cuda
* libnd4j: Multinomial op corrected data types according ops.proto
Co-authored-by: raver119 <raver119@gmail.com>
2020-01-06 20:35:05 +01:00
|
|
|
|
|
|
|
|
|
// used https://en.wikipedia.org/wiki/Categorical_distribution
|
|
|
|
|
// methods: gumbel trick + softmax + argmax
|
|
|
|
|
template <typename Tx, typename Tz>
|
|
|
|
|
void fillRandomMultiNomial_(LaunchContext* context, graph::RandomGenerator& rng, NDArray& input, NDArray& output, const Nd4jLong numOfSamples, const int dimC) {
|
|
|
|
|
|
|
|
|
|
const Tx* x = input.bufferAsT<Tx>();
|
|
|
|
|
Tz* z = output.bufferAsT<Tz>();
|
|
|
|
|
|
|
|
|
|
Tx minVal = DataTypeUtils::min<Tx>();
|
|
|
|
|
Tx maxVal = 1.0;
|
|
|
|
|
|
|
|
|
|
auto dimA = (0 == dimC) ? 1 : 0;
|
|
|
|
|
const Nd4jLong batchValue = output.sizeAt(dimC);
|
|
|
|
|
const Nd4jLong numOfClassX = input.sizeAt(dimA);
|
|
|
|
|
|
|
|
|
|
const Nd4jLong zDimAstride = output.stridesOf()[dimA];
|
|
|
|
|
const Nd4jLong xDimAstride = input.stridesOf()[dimA];
|
|
|
|
|
const Nd4jLong zDimCstride = output.stridesOf()[dimC];
|
|
|
|
|
const Nd4jLong xDimCstride = input.stridesOf()[dimC];
|
|
|
|
|
|
|
|
|
|
auto func = PRAGMA_THREADS_FOR_2D{
|
|
|
|
|
for (auto nBatchIndex = start_x; nBatchIndex < stop_x; nBatchIndex += inc_x) {
|
|
|
|
|
for (auto nSampleIndexInBatch = start_y; nSampleIndexInBatch < stop_y; nSampleIndexInBatch += inc_y) {
|
|
|
|
|
|
|
|
|
|
const Tx* xTad = x + (nBatchIndex * xDimCstride);
|
|
|
|
|
Tz* zTad = z + (nBatchIndex * zDimCstride);
|
|
|
|
|
Tz& arg = zTad[nSampleIndexInBatch * zDimAstride];
|
|
|
|
|
Tx Max = -minVal;
|
|
|
|
|
|
|
|
|
|
auto nSamplesPerBatch = nBatchIndex * numOfClassX * numOfSamples;
|
|
|
|
|
auto nClassesPerSample = nSampleIndexInBatch * numOfClassX;
|
2020-02-26 19:12:19 +01:00
|
|
|
|
for (Nd4jLong nClass = 0; nClass < numOfClassX; nClass += 1) {
|
Oleh multinomial (#163)
* libnd4j: Multinomial op #8570 first raw step of multinomial random data generator implementation
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op #8570 next step of multinomial random categories generator implementation on both cpu and cuda, need corrections and code clean up before review and testing
* libnd4j: Multinomial op #8570 code clean up and fixed issues data selecting, moved from coords to tads
* libnd4j: Multinomial op #8570 fixed cuda build add reference for math materials that was used for implementation
* libnd4j: Multinomial op #8570 fixed several bugs, added several tests and improved cuda version. current implementation works, need testing of reproduction with the same seed
* libnd4j: Multinomial op #8570 fixes and optimization after discussion in both cuda and cpu
* libnd4j: Multinomial op #8570 add corrections after review, removed tads, replace 2D parallel loop by 3D
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed declaration and add tests need discussion
* libnd4j: Multinomial op fix in test
* libnd4j: Multinomial op corrected behavior to get reproducible results, fixed issue in uniform value getting, tests added, need cuda review and cuda testing
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed indexing on uniform calculation
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op some corrections in max min declaration
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed index calculation, added rewind, corrected input declaration, added stats tests, both cuda and cpu. cuda need testing
* libnd4j: Multinomial op fixed bugs on cuda nad cpu. need review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op corrected tests to handle different orders
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op some improvements after code review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op more corrections after review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op fixed seed usage, update tests, fixed cuda based on comments, fixed bug of rewind, removed one behavior, minor corrections.
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op minor corrections
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op rise the bound of fluctuation for random cases
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* libnd4j: Multinomial op modified operation inputs and update implementation and tests on both cpu and cuda
* libnd4j: Multinomial op corrected data types according ops.proto
Co-authored-by: raver119 <raver119@gmail.com>
2020-01-06 20:35:05 +01:00
|
|
|
|
auto nIndex = nSamplesPerBatch + nClassesPerSample + nClass;
|
|
|
|
|
auto unifornLog = nd4j::math::nd4j_log<Tx, Tx>(-nd4j::math::nd4j_log<Tx, Tx>(rng.relativeT<Tx>(nIndex, minVal, maxVal)));
|
|
|
|
|
Tx tValue = (xTad[nClass * xDimAstride] - unifornLog);
|
|
|
|
|
if (tValue > Max) {
|
|
|
|
|
Max = tValue;
|
|
|
|
|
arg = nClass;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
samediff::Threads::parallel_for(func, 0, batchValue, 1, 0, numOfSamples, 1);
|
|
|
|
|
rng.rewindH(output.lengthOf()*numOfClassX);
|
|
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void fillRandomMultiNomial(LaunchContext* context, graph::RandomGenerator& rng, NDArray& input, NDArray& output, const Nd4jLong numOfSamples, const int dimC) {
|
|
|
|
|
BUILD_DOUBLE_SELECTOR(input.dataType(), output.dataType(), fillRandomMultiNomial_, (context, rng, input, output, numOfSamples, dimC), FLOAT_TYPES, INDEXING_TYPES);
|
|
|
|
|
}
|
|
|
|
|
|
2019-11-04 14:42:28 +01:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|