Samuel Audet ff73e6da3f ND4J: Fix OpenBLAS loading for nd4j-native (#64)
* ND4J: Fix OpenBLAS loading for nd4j-native and remove bundling of OpenMP

Signed-off-by: Samuel Audet <samuel.audet@gmail.com>

* Bundle back libgomp.so.1 for Linux

Signed-off-by: Samuel Audet <samuel.audet@gmail.com>

* Readd preload directories for ARM

Signed-off-by: Samuel Audet <samuel.audet@gmail.com>

* Add back preloads for GCC on Windows

Signed-off-by: Samuel Audet <samuel.audet@gmail.com>

* Add explicit preloadpaths for ARM and POWER to bundle correct library

Signed-off-by: Samuel Audet <samuel.audet@gmail.com>
2019-11-21 15:54:41 +03:00
2019-11-14 19:38:20 +11:00
2019-11-14 19:38:20 +11:00
2019-11-16 23:21:45 +11:00
2019-11-21 15:43:03 +03:00
2019-11-13 17:15:18 +03:00
2019-11-14 19:38:20 +11:00
2019-06-06 15:21:15 +03:00
2019-11-14 19:38:20 +11:00
2019-06-06 15:21:15 +03:00
2019-06-06 15:21:15 +03:00
2019-09-10 19:09:46 +10:00

Monorepo of Deeplearning4j

Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:

To build everything, we can use commands like

./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx

or

mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true

An example of GPU "CC" or compute capability is 61 for Titan X Pascal.

Want some examples?

We have separate repository with various examples available: https://github.com/eclipse/deeplearning4j-examples

In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/eclipse/deeplearning4j-examples/tree/master/tutorials

Description
No description provided
Readme 108 MiB
Languages
Java 62.6%
C++ 25.3%
Cuda 4.6%
Kotlin 3.2%
PureBasic 1.8%
Other 2.3%