116 lines
4.1 KiB
C++
116 lines
4.1 KiB
C++
/* ******************************************************************************
|
|
*
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* See the NOTICE file distributed with this work for additional
|
|
* information regarding copyright ownership.
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#include <system/op_boilerplate.h>
|
|
#if NOT_EXCLUDED(OP_crelu)
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include<ops/declarable/helpers/transforms.h>
|
|
#include <ops/declarable/helpers/legacy_helpers.h>
|
|
namespace sd {
|
|
namespace ops {
|
|
CUSTOM_OP_IMPL(crelu, 1, 1, false, 0, 0) {
|
|
auto x = INPUT_VARIABLE(0);
|
|
|
|
REQUIRE_TRUE(x->isR(), 0, "CRELU: input must be real type");
|
|
|
|
auto tmp = x->dup();
|
|
tmp.applyTransform(sd::transform::Neg, tmp);
|
|
|
|
auto z = OUTPUT_VARIABLE(0);
|
|
|
|
helpers::concat(block.launchContext(), {x, &tmp}, *z, x->rankOf()-1);
|
|
// NDArrayFactory<T>::concat({x, tmp}, -1, z);
|
|
|
|
// TODO: make this configurable?
|
|
double threshold = 0.0;
|
|
z->applyScalar(sd::scalar::RELU, threshold, *z);
|
|
|
|
STORE_RESULT(z);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
DECLARE_TYPES(crelu) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(0, DataType::ANY)
|
|
->setSameMode(true);
|
|
}
|
|
|
|
DECLARE_SHAPE_FN(crelu) {
|
|
auto inShape = inputShape->at(0);
|
|
std::vector<Nd4jLong> shape;
|
|
for (int e = 0; e < shape::rank(inShape); e++)
|
|
shape.emplace_back(shape::shapeOf(inShape)[e]);
|
|
|
|
shape[shape.size()-1] *= 2;
|
|
auto newShape = ConstantShapeHelper::getInstance().createShapeInfo(ArrayOptions::dataType(inShape), shape::order(inShape), shape);
|
|
|
|
return SHAPELIST(newShape);
|
|
}
|
|
|
|
CUSTOM_OP_IMPL(crelu_bp, 2, 1, false, 0, 0) {
|
|
auto input = INPUT_VARIABLE(0);
|
|
auto epsilonNext = INPUT_VARIABLE(1);
|
|
auto epsilon = OUTPUT_VARIABLE(0);
|
|
|
|
// at first step we build fwd activation
|
|
sd::ops::crelu op;
|
|
auto tmpResult = op.evaluate({input});
|
|
if (tmpResult.status() != ND4J_STATUS_OK)
|
|
return tmpResult.status();
|
|
|
|
auto actv = tmpResult.at(0);
|
|
|
|
// now we do RELU backward pass
|
|
//actv->applyPairwiseTransform(pairwise::RELUDerivativeE, *epsilon, nullptr);
|
|
helpers::reluDerivative(block.launchContext(), actv, epsilonNext);
|
|
// now we split updated array into 2 chunks along last dimension
|
|
sd::ops::concat_bp opc;
|
|
auto dec = opc.evaluate({input, input, actv}, {-1});
|
|
if (dec.status() != ND4J_STATUS_OK)
|
|
return dec.status();
|
|
|
|
// and now we subtract two parts of epsilons and pass result out
|
|
auto pos = dec.at(0);
|
|
auto neg = dec.at(1);
|
|
|
|
pos->applyPairwiseTransform(sd::pairwise::Subtract, *neg, *epsilon);
|
|
|
|
return ND4J_STATUS_OK;
|
|
}
|
|
|
|
DECLARE_TYPES(crelu_bp) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(0, DataType::ANY)
|
|
->setAllowedInputTypes(1, {DataType::FLOAT32, DataType ::DOUBLE, DataType::HALF})
|
|
->setAllowedOutputTypes(0, {DataType::FLOAT32, DataType ::DOUBLE, DataType::HALF});
|
|
}
|
|
|
|
DECLARE_SHAPE_FN(crelu_bp) {
|
|
auto inShape = inputShape->at(0);
|
|
return SHAPELIST(ConstantShapeHelper::getInstance().createShapeInfo(ShapeDescriptor(inShape)));
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif |