575 lines
25 KiB
Plaintext
575 lines
25 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
#ifndef NDARRAY_CPP
|
|
#define NDARRAY_CPP
|
|
|
|
#include "../NDArray.h"
|
|
#include "../NDArrayFactory.h"
|
|
#include "NativeOpExecutioner.h"
|
|
#include <memory/Workspace.h>
|
|
#include <memory/MemoryRegistrator.h>
|
|
#include <ops.h>
|
|
#include <ops/gemm.h>
|
|
#include <pointercast.h>
|
|
#include <stdexcept>
|
|
#include <memory>
|
|
#include <helpers/logger.h>
|
|
#include <loops/pairwise_transform.h>
|
|
#include <loops/transform_same.h>
|
|
#include <loops/random.h>
|
|
#include <loops/broadcasting.h>
|
|
#include <indexing/NDIndex.h>
|
|
#include <indexing/IndicesList.h>
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <sstream>
|
|
#include <helpers/ArrayUtils.h>
|
|
#include <MmulHelper.h>
|
|
#include <helpers/threshold.h>
|
|
#include <exceptions/datatype_exception.h>
|
|
#include <exceptions/cuda_exception.h>
|
|
#include <specials_cuda.h>
|
|
#include <loops/special_kernels.h>
|
|
#include <PointersManager.h>
|
|
#include "../NDArray.hpp"
|
|
#include <ConstantShapeHelper.h>
|
|
|
|
namespace nd4j {
|
|
|
|
void* NDArray::platformBuffer() { return specialBuffer(); }
|
|
void* NDArray::getPlatformBuffer() const { return getSpecialBuffer(); }
|
|
|
|
Nd4jLong* NDArray::getPlatformShapeInfo() const { return getSpecialShapeInfo(); }
|
|
Nd4jLong* NDArray::platformShapeInfo() { return specialShapeInfo(); }
|
|
|
|
void NDArray::syncToDevice() const {
|
|
auto currentDeviceId = AffinityManager::currentDeviceId();
|
|
if (currentDeviceId != _deviceId) {
|
|
// first of all we update shapeInfo
|
|
const_cast<NDArray*>(this)->setShapeInfo(this->getShapeInfo());
|
|
|
|
// now we actually migrate data buffer
|
|
_buffer->migrate();
|
|
}
|
|
|
|
_buffer->syncToSpecial();
|
|
}
|
|
|
|
void NDArray::syncToHost() const { _buffer->syncToPrimary(getContext()); }
|
|
void NDArray::tickWriteHost() const { _buffer->writePrimary(); }
|
|
void NDArray::tickWriteDevice() const { _buffer->writeSpecial(); }
|
|
void NDArray::tickReadHost() const { _buffer->readPrimary(); }
|
|
void NDArray::tickReadDevice() const { _buffer->readSpecial(); }
|
|
void NDArray::tickBothActual() const { _buffer->writePrimary(); _buffer->readSpecial(); }
|
|
bool NDArray::isActualOnHostSide() const { return _buffer->isPrimaryActual(); }
|
|
bool NDArray::isActualOnDeviceSide() const { return _buffer->isSpecialActual(); }
|
|
void NDArray::makeBothBuffersActual() const { if(!isActualOnHostSide()) syncToHost(); if(!isActualOnDeviceSide()) syncToDevice(); }
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
__global__ static void fillAsTriangularCuda(const void* vx, const Nd4jLong* xShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const T val, const int lower, const int upper) {
|
|
|
|
const auto x = reinterpret_cast<const T*>(vx);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
|
|
__shared__ int zRank, xRank, areSameOffsets; // xRank == zRank always, except when xRank = 1, in this case zRank = 2
|
|
__shared__ Nd4jLong zLen, totalThreads, *sharedMem; // xLen == zLen, except when xRank = 1, in this case zLen = 2*xLen
|
|
|
|
if (threadIdx.x == 0) {
|
|
extern __shared__ unsigned char shmem[];
|
|
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
|
|
areSameOffsets = shape::haveSameShapeAndStrides(xShapeInfo, zShapeInfo);
|
|
xRank = shape::rank(xShapeInfo);
|
|
zRank = shape::rank(zShapeInfo);
|
|
zLen = shape::length(zShapeInfo);
|
|
totalThreads = gridDim.x * blockDim.x;
|
|
}
|
|
__syncthreads();
|
|
|
|
auto coords = sharedMem + threadIdx.x * zRank;
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
|
|
|
|
shape::index2coords(i, zShapeInfo, coords);
|
|
const auto zOffset = shape::getOffset(zShapeInfo, coords);
|
|
|
|
// if( (row + upper < col) || (row + lower > col) )
|
|
if((coords[zRank - 2] + upper < coords[zRank - 1]) || (coords[zRank - 2] + lower > coords[zRank - 1]))
|
|
z[zOffset] = val;
|
|
else if(vx != vz) { // when x and z are different arrays
|
|
if(xRank != zRank)
|
|
coords[0] = coords[1];
|
|
const auto xOffset = areSameOffsets ? zOffset : shape::getOffset(xShapeInfo, coords);
|
|
z[zOffset] = x[xOffset];
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
void NDArray::fillAsTriangular(const float val, int lower, int upper, NDArray& target, const char direction) {
|
|
|
|
if (isS())
|
|
throw std::runtime_error("NDArray::fillAsTriangular: you can't use this method on String array!");
|
|
|
|
if(!isSameShape(target) && !(rankOf() == 1 && target.rankOf() == 2 && sizeAt(0) == target.sizeAt(0) && sizeAt(0) == target.sizeAt(1)))
|
|
throw std::string("NDArray::fillAsTriangular method: wrong shape of target array !");
|
|
|
|
if (direction == 'u')
|
|
lower = -target.sizeAt(-2);
|
|
else if (direction == 'l')
|
|
upper = target.sizeAt(-1);
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 4;
|
|
const int blocksPerGrid = (target.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
const int sharedMem = threadsPerBlock * sizeof(decltype(*target.getShapeInfo())) * target.rankOf() + 128;
|
|
|
|
PointersManager manager(getContext(), "NDArray::fillAsTriangular");
|
|
|
|
NDArray::prepareSpecialUse({&target}, {this});
|
|
fillAsTriangularCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *getContext()->getCudaStream()>>>(getPlatformBuffer(), getPlatformShapeInfo(), target.getPlatformBuffer(), target.getPlatformShapeInfo(), static_cast<T>(val), lower, upper);
|
|
NDArray::registerSpecialUse({&target}, {this});
|
|
|
|
manager.synchronize();
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template ND4J_EXPORT void NDArray::fillAsTriangular, (const float val, int lower, int upper, NDArray& target, const char direction), LIBND4J_TYPES);
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
__global__ static void identityMatrixCuda(void* vx, const Nd4jLong* xShapeInfo, const T val) {
|
|
|
|
auto x = reinterpret_cast<T*>(vx);
|
|
|
|
__shared__ int rank;
|
|
__shared__ Nd4jLong len, totalThreads, *sharedMem; // xLen == zLen, except when xRank = 1, in this case zLen = 2*xLen
|
|
|
|
if (threadIdx.x == 0) {
|
|
extern __shared__ unsigned char shmem[];
|
|
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
|
|
rank = shape::rank(xShapeInfo);
|
|
len = shape::length(xShapeInfo);
|
|
totalThreads = gridDim.x * blockDim.x;
|
|
}
|
|
__syncthreads();
|
|
|
|
auto coords = sharedMem + threadIdx.x * rank;
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (Nd4jLong i = tid; i < len; i += totalThreads) {
|
|
|
|
shape::index2coords(i, xShapeInfo, coords);
|
|
const auto offset = shape::getOffset(xShapeInfo, coords);
|
|
|
|
if(coords[rank - 2] == coords[rank - 1]) // row == col -> on diagonal
|
|
x[offset] = val;
|
|
else
|
|
x[offset] = static_cast<T>(0);
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
static void identityMatrixCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, void* vx, const Nd4jLong *xShapeInfo, const float val) {
|
|
|
|
identityMatrixCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, static_cast<T>(val));
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template void identityMatrixCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, void* vx, const Nd4jLong *xShapeInfo, const float val), LIBND4J_TYPES);
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void NDArray::setIdentity() {
|
|
if (isS())
|
|
throw std::runtime_error("NDArray::setIdentity: you can't use this method on String array!");
|
|
|
|
// if (rankOf() != 2)
|
|
// throw std::runtime_error("NDArray::setIdentity: method should work only for 2D tensors. But " + toStringValue(rankOf()) + " was given.");
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 4;
|
|
const int blocksPerGrid = (lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
const int sharedMem = threadsPerBlock * sizeof(decltype(getShapeInfo())) * rankOf() + 128;
|
|
|
|
PointersManager manager(getContext(), "NDArray::setIdentity");
|
|
|
|
syncToDevice();
|
|
BUILD_SINGLE_SELECTOR(dataType(), identityMatrixCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, getContext()->getCudaStream(), getPlatformBuffer(), getPlatformShapeInfo(), 1.f), LIBND4J_TYPES);
|
|
tickWriteDevice();
|
|
|
|
manager.synchronize();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
void NDArray::swapUnsafe(NDArray& other) {
|
|
auto xType = this->dataType();
|
|
|
|
if (xType != other.dataType())
|
|
throw std::runtime_error("NDArray::swapUnsage method: both arrays must have the same data type");
|
|
|
|
if(specialBuffer() == nullptr || other.specialBuffer() == nullptr)
|
|
throw std::runtime_error("NDArray::swapUnsafe method: input array should not be empty!");
|
|
|
|
if(lengthOf() != other.lengthOf())
|
|
throw std::runtime_error("NDArray::swapUnsafe method: input arrays should have the same length!");
|
|
|
|
BUILD_SINGLE_SELECTOR(xType, templatedSwapUnsafe, (specialBuffer(), specialShapeInfo(), other.specialBuffer(), other.specialShapeInfo(), getContext()->getCudaStream()), LIBND4J_TYPES);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void NDArray::synchronize(const char* msg) const {
|
|
auto res = cudaStreamSynchronize(*(getContext()->getCudaStream()));
|
|
if (res != 0)
|
|
throw std::runtime_error(msg + std::string(": synchronization failed !"));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void NDArray::prepareSpecialUse(const std::vector<const NDArray*>& writeList, const std::vector<const NDArray*>& readList, bool synchronizeWritables) {
|
|
|
|
for (const auto& a : readList)
|
|
if(a != nullptr)
|
|
a->syncToDevice();
|
|
|
|
for (const auto& a : writeList) {
|
|
if (a != nullptr) {
|
|
a->getDataBuffer()->allocateSpecial();
|
|
if (synchronizeWritables)
|
|
a->syncToDevice();
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void NDArray::registerSpecialUse(const std::vector<const NDArray*>& writeList, const std::vector<const NDArray*>& readList) {
|
|
|
|
for (const auto& p : readList)
|
|
if(p != nullptr)
|
|
p->tickReadDevice();
|
|
|
|
for (const auto& p : writeList)
|
|
if (p != nullptr)
|
|
p->tickWriteDevice();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void NDArray::preparePrimaryUse(const std::vector<const NDArray*>& writeList, const std::vector<const NDArray*>& readList, bool synchronizeWritables) {
|
|
|
|
for (const auto& a : readList)
|
|
if(a != nullptr)
|
|
a->syncToHost();
|
|
|
|
for (const auto& a : writeList) {
|
|
if (a != nullptr) {
|
|
a->getDataBuffer()->allocatePrimary();
|
|
if (synchronizeWritables)
|
|
a->syncToHost();
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void NDArray::registerPrimaryUse(const std::vector<const NDArray*>& writeList, const std::vector<const NDArray*>& readList) {
|
|
|
|
for (const auto& p : readList)
|
|
if(p != nullptr)
|
|
p->tickReadHost();
|
|
|
|
for (const auto& p : writeList)
|
|
if (p != nullptr)
|
|
p->tickWriteHost();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void NDArray::syncShape() const {
|
|
cudaMemcpy(getSpecialShapeInfo(), getShapeInfo(), shape::shapeInfoByteLength(getShapeInfo()), cudaMemcpyHostToDevice);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void* NDArray::specialBufferWithOffset(Nd4jLong offset) const {
|
|
return getSpecialBuffer() != nullptr ? static_cast<int8_t*>(getSpecialBuffer()) + (offset * sizeOfT()) : nullptr;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// change an array by repeating it the number of times given by reps.
|
|
NDArray NDArray::tile(const std::vector<Nd4jLong>& reps) const {
|
|
int dim = reps.size();
|
|
Nd4jLong product = 1;
|
|
for(const auto& item : reps)
|
|
product *= item;
|
|
|
|
if(product < 1)
|
|
throw std::runtime_error("NDArray::tile method: one of the elements in reps array is zero !");
|
|
|
|
int rankOld = rankOf();
|
|
int diff = rankOld - dim;
|
|
if(product==1) { // in this case 2 possibilities are present: just reshape or nothing to do
|
|
NDArray result(*this);
|
|
if(diff < 0) { // reshape to higher dimension
|
|
std::vector<Nd4jLong> shapeNew = reps; // need to have unities at first "diff" positions of new shape
|
|
memcpy(&shapeNew[-diff], result.getShapeInfo()+1, rankOld * sizeof(Nd4jLong)); // put old shape numbers at rest of positions
|
|
result.reshapei(ordering(), shapeNew);
|
|
}
|
|
return result; // nothing to do, if diff >= 0 -> identity tile
|
|
}
|
|
|
|
// evaluate shapeInfo for resulting array
|
|
auto newShapeInfo = ShapeUtils::evalTileShapeInfo(*this, reps, getContext()->getWorkspace());
|
|
// create new buffer, in any case the memory amount new buffer points to is bigger then those for old _buffer
|
|
std::shared_ptr<DataBuffer> newBuff = std::make_shared<DataBuffer>(shape::length(newShapeInfo) * sizeOfT(), dataType(), getContext()->getWorkspace(), true);
|
|
// assign new shape and new buffer to resulting array
|
|
NDArray result(newBuff, ShapeDescriptor(newShapeInfo), getContext());
|
|
|
|
// fill newBuff, loop through all elements of newBuff
|
|
// looping through getBuffer() goes automatically by means of getSubArrayIndex applying
|
|
const auto resultLen = result.lengthOf();
|
|
auto xType = this->dataType();
|
|
auto stream = getContext()->getCudaStream();
|
|
|
|
prepareSpecialUse({&result}, {this});
|
|
BUILD_SINGLE_SELECTOR(xType, tileKernelH, (this->getSpecialBuffer(), this->getSpecialShapeInfo(), result.getSpecialBuffer(), result.getSpecialShapeInfo(), resultLen, stream), LIBND4J_TYPES);
|
|
registerSpecialUse({&result}, {this});
|
|
|
|
return result;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// change an array by repeating it the number of times given by reps.
|
|
void NDArray::tile(const std::vector<Nd4jLong>& reps, NDArray& target) const {
|
|
|
|
auto repProd = shape::prodLong(reps.data(), reps.size());
|
|
if (repProd < 1)
|
|
throw std::runtime_error("NDArray::tile: reps can't contain 0s");
|
|
|
|
// evaluate true tile shapeInfo for comparison with target shapeInfo
|
|
auto newShapeInfo = ShapeUtils::evalTileShapeInfo(*this, reps, getContext()->getWorkspace());
|
|
if(!shape::equalsSoft(newShapeInfo, target.getShapeInfo())) {
|
|
throw std::runtime_error("NDArray::tile method - shapeInfo of target array is not suitable for tile operation !");
|
|
}
|
|
|
|
// fill newBuff, loop through all elements of newBuff
|
|
// looping through getBuffer() goes automatically by means of getSubArrayIndex applying
|
|
const int ews = target.ews();
|
|
const int targetLen = target.lengthOf();
|
|
auto stream = getContext()->getCudaStream();
|
|
|
|
prepareSpecialUse({&target}, {this});
|
|
BUILD_SINGLE_SELECTOR_TWICE(target.dataType(), tileKernelHH, (getSpecialBuffer(), getSpecialShapeInfo(), target.getSpecialBuffer(), target.getSpecialShapeInfo(), targetLen, ews, stream), LIBND4J_TYPES);
|
|
registerSpecialUse({&target}, {this});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void NDArray::tile(NDArray& target) const {
|
|
if(rankOf() > target.rankOf())
|
|
throw std::runtime_error("NDArray::tile method - rank of target array must be bigger or equal to the rank of this array !");
|
|
|
|
if(!ShapeUtils::areShapesBroadcastable(*this, target))
|
|
throw std::runtime_error("NDArray::tile method - shapeInfo of target array is not suitable for tile operation !");
|
|
|
|
// fill newBuff, loop through all elements of newBuff
|
|
// looping through getBuffer() goes automatically by means of getSubArrayIndex applying
|
|
const auto ews = target.ews();
|
|
const auto targetLen = target.lengthOf();
|
|
auto stream = getContext()->getCudaStream();
|
|
|
|
prepareSpecialUse({&target}, {this});
|
|
BUILD_SINGLE_SELECTOR_TWICE(target.dataType(), tileKernelHH, (getSpecialBuffer(), getSpecialShapeInfo(), target.getSpecialBuffer(), target.getSpecialShapeInfo(), targetLen, ews, stream), LIBND4J_TYPES);
|
|
registerSpecialUse({&target}, {this});
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template<typename X, typename Z>
|
|
__global__ static void repeatCuda(const void* vx, const Nd4jLong* xShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo,
|
|
const int* repeats, const int repSize,
|
|
const int axis) {
|
|
|
|
const X* x = reinterpret_cast<const X*>(vx);
|
|
Z* z = reinterpret_cast<Z*>(vz);
|
|
|
|
__shared__ int rank;
|
|
__shared__ Nd4jLong zLen, totalThreads, *sharedMem; // xLen = zLen
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
extern __shared__ unsigned char shmem[];
|
|
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
|
|
|
|
rank = shape::rank(zShapeInfo); // xRank = zRank
|
|
zLen = shape::length(zShapeInfo); // xLen <= zLen
|
|
|
|
totalThreads = gridDim.x * blockDim.x;
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
auto coords = sharedMem + threadIdx.x * rank;
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
|
|
|
|
shape::index2coords(i, zShapeInfo, coords);
|
|
|
|
const auto zOffset = shape::getOffset(zShapeInfo, coords);
|
|
|
|
if(repSize > 1) {
|
|
for (uint j = 0; j < repSize; ++j) {
|
|
coords[axis] -= repeats[j];
|
|
if (coords[axis] < 0) {
|
|
coords[axis] = j;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
coords[axis] /= repeats[0];
|
|
|
|
z[zOffset] = x[shape::getOffset(xShapeInfo, coords)];
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename X, typename Z>
|
|
static void repeatCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
|
|
const void* vx, const Nd4jLong* xShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo,
|
|
const int* repeats, const int repSize,
|
|
const int axis) {
|
|
|
|
repeatCuda<X,Z><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vz, zShapeInfo, repeats, repSize, axis);
|
|
}
|
|
BUILD_DOUBLE_TEMPLATE(template void repeatCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const int* repeats, const int repSize, const int axis), LIBND4J_TYPES, LIBND4J_TYPES);
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// create new array by repeating it the number of times given by repeats
|
|
NDArray NDArray::repeat(const int axis, const std::vector<int>& repeats) const {
|
|
|
|
NDArray output('c', ShapeUtils::evalRepeatShape(axis, repeats, *this), dataType(), getContext());
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 2;
|
|
const int blocksPerGrid = (output.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
const int sharedMem = output.rankOf() * sizeof(Nd4jLong) * threadsPerBlock + 128;
|
|
|
|
PointersManager manager(getContext(), "NDArray::repeat(const int axis, const std::vector<int>& repeats)");
|
|
|
|
const int* reps = reinterpret_cast<int*>(manager.replicatePointer(repeats.data(), repeats.size() * sizeof(int)));
|
|
|
|
prepareSpecialUse({&output}, {this});
|
|
BUILD_SINGLE_SELECTOR_TWICE(dataType(), repeatCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, getContext()->getCudaStream(), getSpecialBuffer(), getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), reps, repeats.size(), axis), LIBND4J_TYPES);
|
|
prepareSpecialUse({&output}, {this});
|
|
|
|
manager.synchronize();
|
|
|
|
return output;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// fill array by repeating it the number of times given by repeats
|
|
void NDArray::repeat(const int axis, const std::vector<int>& repeats, NDArray& target) const {
|
|
|
|
if(!target.isSameShape(ShapeUtils::evalRepeatShape(axis, repeats, *this)))
|
|
throw std::invalid_argument("NDArray::repeat(const int axis, const std::vector<int>& repeats, NDArray& target) method: wrong shape of target array!");
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 2;
|
|
const int blocksPerGrid = (target.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
const int sharedMem = target.rankOf() * sizeof(Nd4jLong) * threadsPerBlock + 128;
|
|
|
|
PointersManager manager(getContext(), "NDArray::repeat(const int axis, const std::vector<int>& repeats)");
|
|
|
|
const int* reps = reinterpret_cast<int*>(manager.replicatePointer(repeats.data(), repeats.size() * sizeof(int)));
|
|
|
|
prepareSpecialUse({&target}, {this});
|
|
BUILD_DOUBLE_SELECTOR(dataType(), target.dataType(), repeatCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, getContext()->getCudaStream(), getSpecialBuffer(), getSpecialShapeInfo(), target.specialBuffer(), target.specialShapeInfo(), reps, repeats.size(), axis), LIBND4J_TYPES, LIBND4J_TYPES);
|
|
prepareSpecialUse({&target}, {this});
|
|
|
|
manager.synchronize();
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void* NDArray::specialBuffer() {
|
|
|
|
if (_buffer->special() == nullptr)
|
|
return getBuffer();
|
|
// FIXME: this should be fixed once CUDA backend added
|
|
return static_cast<int8_t*>(_buffer->special()) + (_offset * sizeOfT());
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void* NDArray::getSpecialBuffer() const {
|
|
if (_buffer->special() == nullptr)
|
|
return getBuffer();
|
|
// FIXME: this should be fixed once CUDA backend added
|
|
return static_cast<int8_t*>(_buffer->special()) + (_offset * sizeOfT());
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
void NDArray::printCurrentBuffer(const bool host, const char* msg, const int precision) const {
|
|
|
|
if(_length == 0)
|
|
{ printf("NDArray::printActualBuffer: array length is zero !\n"); return; }
|
|
|
|
if(msg)
|
|
printf("%s", msg);
|
|
|
|
if(host) {
|
|
if(getBuffer() == nullptr || _length == 0)
|
|
{ printf("NDArray::printActualBuffer: host buffer is nullptr !\n"); return; }
|
|
|
|
const T* buff = bufferAsT<T>();
|
|
for (uint i = 0; i < _length; i++)
|
|
printf("%.*f, ", precision, (double)buff[getOffset(i)]);
|
|
printf("\n");
|
|
}
|
|
else {
|
|
if(getSpecialBuffer() == nullptr || _length == 0)
|
|
{ printf("NDArray::printSpecialBuffer: special buffer is nullptr !\n"); return; }
|
|
|
|
void* pHost = operator new(sizeof(T) * _length);
|
|
|
|
if (ews() != 1) {
|
|
for (uint i = 0; i < _length; i++)
|
|
cudaMemcpyAsync(reinterpret_cast<T*>(pHost) + i, specialBufferWithOffset(i), sizeof(T), cudaMemcpyDeviceToHost, *(getContext()->getCudaStream()));
|
|
}
|
|
else
|
|
cudaMemcpyAsync(pHost, getSpecialBuffer(), sizeOfT() * _length, cudaMemcpyDeviceToHost, *getContext()->getCudaStream());
|
|
|
|
cudaError_t cudaResult = cudaStreamSynchronize(*getContext()->getCudaStream());
|
|
if(cudaResult != 0)
|
|
throw std::runtime_error("NDArray::printSpecialBuffer: cudaStreamSynchronize failed!");
|
|
|
|
for (uint i = 0; i < _length; i++)
|
|
printf("%.*f, ", precision, (double)reinterpret_cast<T*>(pHost)[i]);
|
|
printf("\n");
|
|
|
|
operator delete(pHost);
|
|
}
|
|
}
|
|
template void NDArray::printCurrentBuffer<int>(const bool host,const char* msg, const int precision) const;
|
|
template void NDArray::printCurrentBuffer<float>(const bool host, const char* msg, const int precision) const;
|
|
template void NDArray::printCurrentBuffer<double>(const bool host, const char* msg, const int precision) const;
|
|
|
|
|
|
#if defined(__CUDACC__) && !defined(BUILD_TESTS)
|
|
|
|
//#include <cpu/NDArrayLambda.hpp>
|
|
|
|
#endif
|
|
|
|
} // end namespace nd4j
|
|
#endif
|
|
|