cavis/libnd4j/include/ops/declarable/helpers/cpu/lrn.cpp

422 lines
20 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <ops/declarable/helpers/lrn.h>
#include <Status.h>
#include <ConstantTadHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
#ifdef HAVE_MKLDNN
using namespace mkldnn;
static void getMKLDNNMemoryDescLrn(const NDArray* src, const NDArray* diff_src, const NDArray* dst,
mkldnn::memory::desc* lrn_src_md, mkldnn::memory::desc* lrn_diff_src_md, mkldnn::memory::desc* lrn_dst_md,
mkldnn::memory::desc* user_src_md, mkldnn::memory::desc* user_diff_src_md, mkldnn::memory::desc* user_dst_md, int axis) {
const Nd4jLong* shape = src->getShapeInfo();
long rank = shape[0];
long dim1 = axis; // MKL-DNN supports only 1 axis, which has to be the "channel" one
long dim2 = axis >= 2 ? 1 : 2;
long dim3 = axis >= 3 ? 2 : 3;
mkldnn::memory::dims lrn_src_tz = { (int)shape[1], (int)shape[dim1 + 1], rank > 2 ? (int)shape[dim2 + 1] : 1, rank > 3 ? (int)shape[dim3 + 1] : 1};
auto type = mkldnn::memory::data_type::f32;
auto format = axis == 1 ? mkldnn::memory::format::nchw : mkldnn::memory::format::nhwc;
auto supposed_to_be_any_format = format; // doesn't work with "any"
if (src != nullptr && src->getBuffer() != nullptr && lrn_src_md != nullptr) {
*lrn_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format);
*user_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, format);
user_src_md->data.format = mkldnn_blocked;
user_src_md->data.layout_desc.blocking.strides[0][0] = src->stridesOf()[0];
user_src_md->data.layout_desc.blocking.strides[0][1] = src->stridesOf()[dim1];
user_src_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? src->stridesOf()[dim2] : 1;
user_src_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? src->stridesOf()[dim3] : 1;
}
if (diff_src != nullptr && diff_src->getBuffer() != nullptr && lrn_diff_src_md != nullptr) {
*lrn_diff_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format);
*user_diff_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, format);
user_diff_src_md->data.format = mkldnn_blocked;
user_diff_src_md->data.layout_desc.blocking.strides[0][0] = diff_src->stridesOf()[0];
user_diff_src_md->data.layout_desc.blocking.strides[0][1] = diff_src->stridesOf()[dim1];
user_diff_src_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? diff_src->stridesOf()[dim2] : 1;
user_diff_src_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? diff_src->stridesOf()[dim3] : 1;
}
if (dst != nullptr && dst->getBuffer() != nullptr && lrn_dst_md != nullptr) {
*lrn_dst_md = mkldnn::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format);
*user_dst_md = mkldnn::memory::desc({ lrn_src_tz }, type, format);
user_dst_md->data.format = mkldnn_blocked;
user_dst_md->data.layout_desc.blocking.strides[0][0] = dst->stridesOf()[0];
user_dst_md->data.layout_desc.blocking.strides[0][1] = dst->stridesOf()[dim1];
user_dst_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? dst->stridesOf()[dim2] : 1;
user_dst_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? dst->stridesOf()[dim3] : 1;
}
}
#endif
template <typename T>
static int lrnFunctor_(nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, float bias, float alpha, float beta) {
#ifdef HAVE_MKLDNN
if (block.isUseMKLDNN() && nd4j::MKLDNNStream::isSupported({input, output})) {
std::vector<nd4j::MKLDNNStream>& streams = block.getMKLDNNStreams();
if (streams.empty()) {
streams.push_back(MKLDNNStream("lrn"));
}
if (streams[0].checkAndReset({input}, {output}, {(float)bias, (float)alpha, (float)beta}, {depth})) {
mkldnn_memory_desc_t empty;
mkldnn::memory::desc lrn_src_md(empty), lrn_dst_md(empty), user_src_md(empty), user_dst_md(empty);
getMKLDNNMemoryDescLrn(input, nullptr, output, &lrn_src_md, nullptr, &lrn_dst_md, &user_src_md, nullptr, &user_dst_md, input->rankOf() - 1);
auto lrn_desc = lrn_forward::desc(prop_kind::forward_inference, lrn_across_channels, lrn_src_md, (2 * depth + 1), alpha * (2 * depth + 1), beta, bias);
auto engine = streams[0].getEngine();
auto lrn_prim_desc = lrn_forward::primitive_desc(lrn_desc, engine);
auto user_src_memory = mkldnn::memory({user_src_md, engine}, input->buffer());
auto user_dst_memory = mkldnn::memory({user_dst_md, engine}, output->buffer());
auto lrn_src_memory = user_src_memory;
streams[0].addMemory(user_src_memory);
if (mkldnn::memory::primitive_desc(lrn_prim_desc.src_primitive_desc())
!= user_src_memory.get_primitive_desc()) {
lrn_src_memory = mkldnn::memory(lrn_prim_desc.src_primitive_desc());
streams[0].addMemory(lrn_src_memory);
streams[0].addOperation(reorder(user_src_memory, lrn_src_memory));
}
auto lrn_dst_memory = user_dst_memory;
streams[0].addMemory(user_dst_memory);
if (mkldnn::memory::primitive_desc(lrn_prim_desc.dst_primitive_desc())
!= user_dst_memory.get_primitive_desc()) {
lrn_dst_memory = mkldnn::memory(lrn_prim_desc.dst_primitive_desc());
streams[0].addMemory(lrn_dst_memory);
}
streams[0].addOperation(lrn_forward(lrn_prim_desc, lrn_src_memory, lrn_dst_memory));
if (mkldnn::memory::primitive_desc(lrn_prim_desc.dst_primitive_desc())
!= user_dst_memory.get_primitive_desc()) {
streams[0].addOperation(reorder(lrn_dst_memory, user_dst_memory));
}
}
streams[0].submitAndWait();
return ND4J_STATUS_OK;
}
#endif
nd4j_debug("MKL-DNN is not used for lrn!\n", 0);
const int rank = input->rankOf();
TadPack inTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {rank - 1});
TadPack outTadPack;
if(shape::haveSameShapeAndStrides(input->getShapeInfo(), output->getShapeInfo()))
outTadPack = inTadPack;
else
outTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {rank - 1});
const Nd4jLong numOfTads = inTadPack.numberOfTads();
const Nd4jLong tadLen = input->sizeAt(-1);
const Nd4jLong* inTadOffsets = inTadPack.primaryOffsets();
const Nd4jLong* outTadOffsets = outTadPack.primaryOffsets();
const Nd4jLong inTadEws = shape::elementWiseStride(inTadPack.primaryShapeInfo());
const Nd4jLong outTadEws = shape::elementWiseStride(outTadPack.primaryShapeInfo());
const T* inBuff = reinterpret_cast<T*>(input->getBuffer());
T* outBuff = reinterpret_cast<T*>(output->getBuffer());
const T tbias = static_cast<T>(bias);
const T tbeta = static_cast<T>(beta);
const T talpha = static_cast<T>(alpha);
if(inTadEws == 1 && outTadEws == 1) {
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfTads; ++i) {
const T* x = inBuff + inTadOffsets[i];
T* y = outBuff + outTadOffsets[i];
T prev = 0;
// calculate squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
for (uint s = begin; s < end; ++s)
prev = prev + x[s] * x[s];
y[j] = prev;
}
else if (begin == 0 && last <= tadLen)
y[j] = prev + x[end - 1] * x[end - 1];
else if (begin > 0 && last <= tadLen)
y[j] = prev + x[end - 1] * x[end - 1] - x[begin - 1] * x[begin - 1];
else if (begin > 0 && last > tadLen)
y[j] = prev - x[begin - 1] * x[begin - 1];
else
y[j] = prev;
if(j != 0)
prev = y[j];
y[j] = x[j] / nd4j::math::nd4j_pow<T, T, T>(tbias + alpha * prev, tbeta);
}
}
}
else {
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfTads; ++i) {
const T* x = inBuff + inTadOffsets[i];
T* y = outBuff + outTadOffsets[i];
T prev = 0;
// calculate squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
for (uint s = begin; s < end; ++s)
prev = prev + x[s*inTadEws] * x[s*inTadEws];
y[j*outTadEws] = prev;
}
else if (begin == 0 && last <= tadLen)
y[j*outTadEws] = prev + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws];
else if (begin > 0 && last <= tadLen)
y[j*outTadEws] = prev + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws] - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws];
else if (begin > 0 && last > tadLen)
y[j*outTadEws] = prev - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws];
else
y[j*outTadEws] = prev;
if(j != 0)
prev = y[j*outTadEws];
y[j*outTadEws] = x[j*inTadEws] / nd4j::math::nd4j_pow<T, T, T>(tbias + alpha * prev, tbeta);
}
}
}
return Status::OK();
}
BUILD_SINGLE_TEMPLATE(template int lrnFunctor_, (nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, float bias, float alpha, float beta), FLOAT_TYPES);
int lrnFunctor(nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, double bias, double alpha, double beta) {
BUILD_SINGLE_SELECTOR(input->dataType(), return lrnFunctor_, (block, input, output, depth, bias, alpha, beta), FLOAT_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Y>
static void lrnBP_(const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta) {
const int rank = input.rankOf();
TadPack inTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), {rank - 1});
TadPack gradITadPack;
if(shape::haveSameShapeAndStrides(input.getShapeInfo(), gradI.getShapeInfo()))
gradITadPack = inTadPack;
else
gradITadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradI.getShapeInfo(), {rank - 1});
const Nd4jLong numOfTads = inTadPack.numberOfTads();
const Nd4jLong tadLen = input.sizeAt(-1);
const Nd4jLong* inTadOffsets = inTadPack.primaryOffsets();
const Nd4jLong* gradITadOffsets = gradITadPack.primaryOffsets();
const Nd4jLong inTadEws = shape::elementWiseStride(inTadPack.primaryShapeInfo());
const Nd4jLong gradITadEws = shape::elementWiseStride(gradITadPack.primaryShapeInfo());
const X* inBuff = reinterpret_cast<X*>(input.getBuffer());
Y* gradIBuff = reinterpret_cast<Y*>(gradI.getBuffer());
const Y tbias = static_cast<Y>(bias);
const Y tbeta = static_cast<Y>(beta);
const Y talpha = static_cast<Y>(alpha);
const Y coeff = talpha * tbeta;
if(inTadEws == 1 && gradITadEws == 1) {
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfTads; ++i) {
const X* x = inBuff + inTadOffsets[i];
Y* y = gradIBuff + gradITadOffsets[i];
// this loop calculates squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
y[0] = 0;
for (uint s = begin; s < end; ++s)
y[0] = y[0] + x[s] * x[s];
}
else if (begin == 0 && last <= tadLen)
y[j] = y[j - 1] + x[end - 1] * x[end - 1];
else if (begin > 0 && last <= tadLen)
y[j] = y[j - 1] + x[end - 1] * x[end - 1] - x[begin - 1] * x[begin - 1];
else if (begin > 0 && last > tadLen)
y[j] = y[j - 1] - x[begin - 1] * x[begin - 1];
else
y[j] = y[j - 1];
}
Y* factor = new Y[tadLen];
Y prev = 0;
// second loop calculates derivatives using information gained in first loop above
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
Y init = tbias + talpha * y[j];
if (j == 0) {
for (uint s = begin; s < end; ++s) {
factor[s] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[s], -tbeta - 1);
prev = prev + x[s] * factor[s];
}
y[0] = prev;
}
else if(begin == 0 && last <= tadLen) {
factor[end - 1] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[end - 1], -tbeta - 1);
y[j] = prev + x[end - 1] * factor[end - 1];
}
else if (begin > 0 && last <= tadLen) {
factor[end - 1] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[end - 1], -tbeta - 1);
y[j] = prev + x[end - 1] * factor[end - 1] - x[begin - 1] * factor[begin - 1];
}
else if (begin > 0 && last > tadLen)
y[j] = prev - x[begin - 1] * factor[begin - 1];
else
y[j] = prev;
if(j != 0)
prev = y[j];
y[j] = factor[j] * init - 2 * x[j] * coeff * prev;
}
delete []factor;
}
}
else {
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfTads; ++i) {
const X* x = inBuff + inTadOffsets[i];
Y* y = gradIBuff + gradITadOffsets[i];
// this loop calculates squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
y[0] = 0;
for (uint s = begin; s < end; ++s)
y[0] = y[0] + x[s*inTadEws] * x[s*inTadEws];
}
else if (begin == 0 && last <= tadLen)
y[j*gradITadEws] = y[(j - 1)*gradITadEws] + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws];
else if (begin > 0 && last <= tadLen)
y[j*gradITadEws] = y[(j - 1)*gradITadEws] + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws] - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws];
else if (begin > 0 && last > tadLen)
y[j*gradITadEws] = y[(j - 1)*gradITadEws] - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws];
else
y[j*gradITadEws] = y[(j - 1)*gradITadEws];
}
Y* factor = new Y[tadLen];
Y prev = 0;
// second loop calculates derivatives using information gained in first loop above
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
Y init = tbias + talpha * y[j*gradITadEws];
if (j == 0) {
for (uint s = begin; s < end; ++s) {
factor[s] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[s*gradITadEws], -tbeta - 1);
prev = prev + x[s*inTadEws] * factor[s];
}
y[0] = prev;
}
else if(begin == 0 && last <= tadLen) {
factor[end - 1] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[(end - 1)*gradITadEws], -tbeta - 1);
y[j*gradITadEws] = prev + x[(end - 1)*inTadEws] * factor[end - 1];
}
else if (begin > 0 && last <= tadLen) {
factor[end - 1] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[(end - 1)*gradITadEws], -tbeta - 1);
y[j*gradITadEws] = prev + x[(end - 1)*inTadEws] * factor[end - 1] - x[(begin - 1)*inTadEws] * factor[begin - 1];
}
else if (begin > 0 && last > tadLen)
y[j*gradITadEws] = prev - x[(begin - 1)*inTadEws] * factor[begin - 1];
else
y[j*gradITadEws] = prev;
if(j != 0)
prev = y[j*gradITadEws];
y[j*gradITadEws] = factor[j] * init - 2 * x[j*inTadEws] * coeff * prev;
}
delete []factor;
}
}
gradI *= gradO;
}
BUILD_DOUBLE_TEMPLATE(template void lrnBP_, (const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta), LIBND4J_TYPES, FLOAT_TYPES);
void lrnBP(nd4j::graph::Context& block, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta) {
BUILD_DOUBLE_SELECTOR(input.dataType(), gradO.dataType(), lrnBP_, (input, gradO, gradI, depth, bias, alpha, beta), LIBND4J_TYPES, FLOAT_TYPES);
}
}
}
}