cavis/libnd4j/include/memory/cuda/Workspace.cu

298 lines
11 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// CUDA workspaces implementation
//
// @author raver119@gmail.com
//
#include <op_boilerplate.h>
#include <atomic>
#include <stdio.h>
#include <stdlib.h>
#include "../Workspace.h"
#include <helpers/logger.h>
#include <templatemath.h>
#include <cstring>
#include <cuda_exception.h>
#include <cuda.h>
#include <cuda_runtime.h>
namespace nd4j {
namespace memory {
Workspace::Workspace(ExternalWorkspace *external) {
if (external->sizeHost() > 0) {
_ptrHost = (char *) external->pointerHost();
_ptrDevice = (char *) external->pointerDevice();
_initialSize = external->sizeDevice();
_currentSize = external->sizeDevice();
_initialSizeSecondary = external->sizeHost();
_currentSizeSecondary = external->sizeHost();
_offset = 0L;
_offsetSecondary = 0L;
this->_cycleAllocations = 0;
this->_cycleAllocationsSecondary = 0;
this->_spillsSize = 0;
this->_spillsSizeSecondary = 0;
_externalized = true;
}
}
Workspace::Workspace(Nd4jLong primarySize, Nd4jLong secondarySize) {
if (secondarySize > 0) {
auto res = cudaHostAlloc(reinterpret_cast<void **>(&_ptrHost), secondarySize, cudaHostAllocDefault);
if (res != 0)
throw cuda_exception::build("Can't allocate [HOST] memory", res);
cudaMemset(this->_ptrHost, 0, secondarySize);
this->_allocatedHost = true;
} else
this->_allocatedHost = false;
if (primarySize > 0) {
auto res = cudaMalloc(reinterpret_cast<void **>(&_ptrDevice), primarySize);
if (res != 0)
throw cuda_exception::build("Can't allocate [DEVICE] memory", res);
cudaMemset(this->_ptrDevice, 0, primarySize);
this->_allocatedDevice = true;
} else
this->_allocatedDevice = false;
this->_initialSize = primarySize;
this->_initialSizeSecondary = secondarySize;
this->_currentSize = primarySize;
this->_currentSizeSecondary = secondarySize;
this->_offset = 0;
this->_offsetSecondary = 0;
this->_cycleAllocations = 0;
this->_spillsSize = 0;
this->_spillsSizeSecondary = 0;
}
void Workspace::init(Nd4jLong primaryBytes, Nd4jLong secondaryBytes) {
if (this->_currentSize < primaryBytes) {
if (this->_allocatedDevice && !_externalized)
cudaFree((void *)this->_ptrDevice);
auto res = cudaMalloc(reinterpret_cast<void **>(&_ptrDevice), secondaryBytes);
if (res != 0)
throw cuda_exception::build("Can't allocate [DEVICE] memory", res);
cudaMemset(this->_ptrDevice, 0, primaryBytes);
this->_currentSize = primaryBytes;
this->_allocatedDevice = true;
}
if (this->_currentSizeSecondary < secondaryBytes) {
if (this->_allocatedHost && !_externalized)
cudaFreeHost((void *)this->_ptrHost);
auto res = cudaHostAlloc(reinterpret_cast<void **>(&_ptrHost), secondaryBytes, cudaHostAllocDefault);
if (res != 0)
throw cuda_exception::build("Can't allocate [HOST] memory", res);
cudaMemset(this->_ptrHost, 0, secondaryBytes);
this->_currentSizeSecondary = secondaryBytes;
this->_allocatedHost = true;
}
}
void Workspace::expandBy(Nd4jLong numBytes, Nd4jLong secondaryBytes) {
this->init(_currentSize + numBytes, _currentSizeSecondary + secondaryBytes);
}
void Workspace::expandTo(Nd4jLong numBytes, Nd4jLong secondaryBytes) {
this->init(numBytes, secondaryBytes);
}
void Workspace::freeSpills() {
_spillsSize = 0;
_spillsSizeSecondary = 0;
for (auto v:_spills)
cudaFree(v);
for (auto v:_spillsSecondary)
cudaFreeHost(v);
_spills.clear();
_spillsSecondary.clear();
}
Workspace::~Workspace() {
if (this->_allocatedHost && !_externalized)
cudaFreeHost((void *)this->_ptrHost);
if (this->_allocatedDevice && !_externalized)
cudaFree((void *)this->_ptrHost);
freeSpills();
}
Nd4jLong Workspace::getUsedSize() {
return getCurrentOffset();
}
Nd4jLong Workspace::getCurrentSize() {
return _currentSize;
}
Nd4jLong Workspace::getCurrentOffset() {
return _offset.load();
}
void* Workspace::allocateBytes(Nd4jLong numBytes) {
return allocateBytes(nd4j::memory::MemoryType::HOST, numBytes);
}
Nd4jLong Workspace::getAllocatedSize() {
return getCurrentSize() + getSpilledSize();
}
void Workspace::scopeIn() {
freeSpills();
init(_cycleAllocations.load());
_cycleAllocations = 0;
}
void Workspace::scopeOut() {
_offset = 0;
}
Nd4jLong Workspace::getSpilledSize() {
return _spillsSize.load();
}
void* Workspace::allocateBytes(nd4j::memory::MemoryType type, Nd4jLong numBytes) {
switch (type) {
case HOST: {
if (numBytes < 1)
throw allocation_exception::build("Number of [HOST] bytes for allocation should be positive", numBytes);
//numBytes += 32;
void* result = nullptr;
this->_cycleAllocationsSecondary += numBytes;
this->_mutexAllocation.lock();
if (_offsetSecondary.load() + numBytes > _currentSizeSecondary) {
nd4j_debug("Allocating %lld [HOST] bytes in spills\n", numBytes);
this->_mutexAllocation.unlock();
Nd4jPointer p;
auto res = cudaHostAlloc(reinterpret_cast<void **>(&p), numBytes, cudaHostAllocDefault);
if (res != 0)
throw cuda_exception::build("Can't allocate [HOST] memory", res);
_mutexSpills.lock();
_spillsSecondary.push_back(p);
_mutexSpills.unlock();
_spillsSizeSecondary += numBytes;
return p;
}
result = (void *)(_ptrHost + _offsetSecondary.load());
_offsetSecondary += numBytes;
//memset(result, 0, (int) numBytes);
nd4j_debug("Allocating %lld bytes from [HOST] workspace; Current PTR: %p; Current offset: %lld\n", numBytes, result, _offset.load());
this->_mutexAllocation.unlock();
return result;
}
break;
case DEVICE: {
if (numBytes < 1)
throw allocation_exception::build("Number of [DEVICE] bytes for allocation should be positive", numBytes);
//numBytes += 32;
void* result = nullptr;
this->_cycleAllocations += numBytes;
this->_mutexAllocation.lock();
if (_offset.load() + numBytes > _currentSize) {
nd4j_debug("Allocating %lld [DEVICE] bytes in spills\n", numBytes);
this->_mutexAllocation.unlock();
Nd4jPointer p;
auto res = cudaMalloc(reinterpret_cast<void **>(&p), numBytes);
if (res != 0)
throw cuda_exception::build("Can't allocate [DEVICE] memory", res);
_mutexSpills.lock();
_spills.push_back(p);
_mutexSpills.unlock();
_spillsSize += numBytes;
return p;
}
result = (void *)(_ptrDevice + _offset.load());
_offset += numBytes;
//memset(result, 0, (int) numBytes);
nd4j_debug("Allocating %lld bytes from [DEVICE] workspace; Current PTR: %p; Current offset: %lld\n", numBytes, result, _offset.load());
this->_mutexAllocation.unlock();
return result;
}
break;
default:
throw std::runtime_error("Unknown MemoryType was passed in");
}
}
Workspace* Workspace::clone() {
// for clone we take whatever is higher: current allocated size, or allocated size of current loop
return new Workspace(nd4j::math::nd4j_max<Nd4jLong >(this->getCurrentSize(), this->_cycleAllocations.load()));
}
Nd4jLong Workspace::getAllocatedSecondarySize() {
return getCurrentSecondarySize() + getSpilledSecondarySize();
}
Nd4jLong Workspace::getCurrentSecondarySize() {
return _currentSizeSecondary;
}
Nd4jLong Workspace::getCurrentSecondaryOffset() {
return _offsetSecondary.load();
}
Nd4jLong Workspace::getSpilledSecondarySize() {
return _spillsSizeSecondary;
}
Nd4jLong Workspace::getUsedSecondarySize() {
return getCurrentSecondaryOffset();
}
}
}