cavis/libnd4j/tests_cpu/layers_tests/ListOperationsTests.cpp

677 lines
18 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "testlayers.h"
#include <NDArray.h>
#include <GraphExecutioner.h>
#include <ops/declarable/CustomOperations.h>
using namespace nd4j;
using namespace nd4j::ops;
class ListOperationsTests : public testing::Test {
};
TEST_F(ListOperationsTests, BasicTest_Write_1) {
NDArrayList list(5);
auto x = NDArrayFactory::create<double>('c', {128});
x.linspace(1);
nd4j::ops::write_list op;
auto result = op.execute(&list, {&x}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
ASSERT_EQ(1, list.elements());
auto result2 = op.execute(&list, {&x}, {}, {2});
ASSERT_EQ(2, list.elements());
delete result;
delete result2;
}
TEST_F(ListOperationsTests, BasicTest_Stack_1) {
NDArrayList list(10);
auto exp = NDArrayFactory::create<double>('c', {10, 100});
auto tads = exp.allTensorsAlongDimension({1});
for (int e = 0; e < 10; e++) {
auto row = NDArrayFactory::create_<double>('c', {100});
row->assign((double) e);
list.write(e, row);
tads->at(e)->assign(row);
}
nd4j::ops::stack_list op;
auto result = op.execute(&list, {}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
auto z = result->at(0);
// z->printShapeInfo();
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
delete result;
delete tads;
}
TEST_F(ListOperationsTests, BasicTest_UnStackList_1) {
NDArrayList list(0, true);
auto x = NDArrayFactory::create<double>('c', {10, 100});
auto tads = x.allTensorsAlongDimension({1});
for (int e = 0; e < 10; e++) {
auto row = NDArrayFactory::create_<double>('c', {100});
row->assign((double) e);
//list.write(e, row);
tads->at(e)->assign(row);
delete row;
}
nd4j::ops::unstack_list op;
auto result = op.execute(&list, {&x}, {}, {0});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
ASSERT_EQ(list.elements(), 10);
// auto z = result->at(0);
// z->printShapeInfo("The first of");
// ASSERT_TRUE(exp.isSameShape(z));
// ASSERT_TRUE(exp.equalsTo(z));
for (int e = 0; e < 10; e++) {
auto row = list.read(e);
ASSERT_TRUE(row->equalsTo(tads->at(e)));
//list.write(e, row);
}
delete result;
delete tads;
}
//TEST_F(ListOperationsTests, BasicTest_UnStackList_2) {
//// NDArrayList list(0, true);
// auto x = NDArrayFactory::create<double>('c', {10, 100});
// auto tads = x.allTensorsAlongDimension({1});
// for (int e = 0; e < 10; e++) {
// auto row = NDArrayFactory::create_<double>('c', {100});
// row->assign((double) e);
// //list.write(e, row);
// tads->at(e)->assign(row);
// delete row;
// }
//
// nd4j::ops::unstack_list op;
//
// auto result = op.execute(nullptr, {&x}, {}, {0});
//
// ASSERT_EQ(ND4J_STATUS_OK, result->status());
// ASSERT_EQ(result->size(), 10);
//
// // auto z = result->at(0);
//// z->printShapeInfo("The first of");
//// ASSERT_TRUE(exp.isSameShape(z));
//// ASSERT_TRUE(exp.equalsTo(z));
// for (int e = 0; e < 10; e++) {
// auto row = result->at(e);
// ASSERT_TRUE(row->equalsTo(tads->at(e)));
// //list.write(e, row);
// }
//
// delete result;
// delete tads;
//}
TEST_F(ListOperationsTests, BasicTest_Read_1) {
NDArrayList list(10);
auto exp = NDArrayFactory::create<double>('c', {1, 100});
exp.assign(4.0f);
for (int e = 0; e < 10; e++) {
auto row = NDArrayFactory::create_<double>('c', {1, 100});
row->assign((double) e);
list.write(e, row->dup());
delete row;
}
nd4j::ops::read_list op;
auto result = op.execute(&list, {}, {}, {4});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
auto z = result->at(0);
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
delete result;
}
TEST_F(ListOperationsTests, BasicTest_Pick_1) {
NDArrayList list(10);
auto exp = NDArrayFactory::create<double>('c', {4, 100});
for (int e = 0; e < 10; e++) {
auto row = NDArrayFactory::create_<double>('c', {100});
row->assign((double) e);
list.write(e, row->dup());
delete row;
}
auto tads = exp.allTensorsAlongDimension({1});
tads->at(0)->assign(1.0f);
tads->at(1)->assign(1.0f);
tads->at(2)->assign(3.0f);
tads->at(3)->assign(3.0f);
nd4j::ops::pick_list op;
auto result = op.execute(&list, {}, {}, {1, 1, 3, 3});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
auto z = result->at(0);
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
delete result;
delete tads;
}
TEST_F(ListOperationsTests, BasicTest_Size_1) {
NDArrayList list(10);
auto exp = NDArrayFactory::create<int>(10);
for (int e = 0; e < 10; e++) {
auto row = NDArrayFactory::create_<double>('c', {100});
row->assign((double) e);
list.write(e, row->dup());
delete row;
}
nd4j::ops::size_list op;
auto result = op.execute(&list, {}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
auto z = result->at(0);
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
delete result;
}
TEST_F(ListOperationsTests, BasicTest_Create_1) {
auto matrix = NDArrayFactory::create<double>('c', {3, 2});
matrix.linspace(1);
nd4j::ops::create_list op;
auto result = op.execute(nullptr, {&matrix}, {}, {1, 1});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
// we return flow as well
ASSERT_EQ(1, result->size());
delete result;
}
TEST_F(ListOperationsTests, BasicTest_Split_1) {
NDArrayList list(0, true);
auto exp0 = NDArrayFactory::create<double>('c', {2, 5});
auto exp1 = NDArrayFactory::create<double>('c', {3, 5});
auto exp2 = NDArrayFactory::create<double>('c', {5, 5});
auto matrix = NDArrayFactory::create<double>('c', {10, 5});
auto lengths = NDArrayFactory::create<int>('c', {3});
lengths.p(0, 2);
lengths.p(1, 3);
lengths.p(2, 5);
auto tads = matrix.allTensorsAlongDimension({1});
auto tads0 = exp0.allTensorsAlongDimension({1});
auto tads1 = exp1.allTensorsAlongDimension({1});
auto tads2 = exp2.allTensorsAlongDimension({1});
int cnt0 = 0;
int cnt1 = 0;
int cnt2 = 0;
for (int e = 0; e < 10; e++) {
auto row = NDArrayFactory::create_<double>('c', {5});
row->assign((double) e);
tads->at(e)->assign(row);
if (e < 2)
tads0->at(cnt0++)->assign(row);
else if (e < 5)
tads1->at(cnt1++)->assign(row);
else
tads2->at(cnt2++)->assign(row);
delete row;
}
nd4j::ops::split_list op;
auto result = op.execute(&list, {&matrix, &lengths}, {}, {});
ASSERT_EQ(Status::OK(), result->status());
ASSERT_EQ(3, list.height());
ASSERT_TRUE(exp0.isSameShape(list.readRaw(0)));
ASSERT_TRUE(exp0.equalsTo(list.readRaw(0)));
ASSERT_TRUE(exp1.isSameShape(list.readRaw(1)));
ASSERT_TRUE(exp1.equalsTo(list.readRaw(1)));
ASSERT_TRUE(exp2.isSameShape(list.readRaw(2)));
ASSERT_TRUE(exp2.equalsTo(list.readRaw(2)));
delete result;
delete tads;
delete tads0;
delete tads1;
delete tads2;
}
TEST_F(ListOperationsTests, BasicTest_Scatter_1) {
NDArrayList list(0, true);
auto s = NDArrayFactory::create<double>(0.0);
auto matrix = NDArrayFactory::create<double>('c', {10, 5});
auto tads = matrix.allTensorsAlongDimension({1});
for (int e = 0; e < 10; e++) {
auto row = NDArrayFactory::create_<double>('c', {1, 5});
row->assign((double) e);
tads->at(e)->assign(row);
delete row;
}
auto indices = NDArrayFactory::create<double>('c', {1, 10});
for (int e = 0; e < matrix.rows(); e++)
indices.p(e, 9 - e);
nd4j::ops::scatter_list op;
auto result = op.execute(&list, {&indices, &matrix, &s}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
for (int e = 0; e < 10; e++) {
auto row = tads->at(9 - e);
auto chunk = list.readRaw(e);
ASSERT_TRUE(chunk->isSameShape(row));
ASSERT_TRUE(chunk->equalsTo(row));
}
delete tads;
delete result;
}
TEST_F(ListOperationsTests, BasicTest_Clone_1) {
auto list = new NDArrayList(0, true);
VariableSpace variableSpace;
auto var = new Variable(nullptr, nullptr, -1, 0);
var->setNDArrayList(list);
variableSpace.putVariable(-1, var);
variableSpace.trackList(list);
Context block(1, &variableSpace);
block.pickInput(-1);
nd4j::ops::clone_list op;
ASSERT_TRUE(list == block.variable(0)->getNDArrayList());
auto result = op.execute(&block);
ASSERT_EQ(ND4J_STATUS_OK, result);
auto resVar = variableSpace.getVariable(1);
auto resList = resVar->getNDArrayList();
ASSERT_TRUE( resList != nullptr);
ASSERT_TRUE(list->equals(*resList));
}
TEST_F(ListOperationsTests, BasicTest_Gather_1) {
NDArrayList list(0, true);
for (int e = 0; e < 10; e++) {
auto row = NDArrayFactory::create_<double>('c', {3});
row->assign((double) e);
list.write(e, row->dup());
delete row;
}
auto exp = NDArrayFactory::create<double>('c', {10, 3});
auto tads = exp.allTensorsAlongDimension({1});
for (int e = 0; e < 10; e++) {
auto tad = tads->at(9 - e);
tad->assign(e);
}
auto indices = NDArrayFactory::create<double>('c', {1, 10});
indices.linspace(9, -1);
nd4j::ops::gather_list op;
auto result = op.execute(&list, {&indices}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
ASSERT_EQ(1, result->size());
auto z = result->at(0);
ASSERT_TRUE(exp.isSameShape(z));
//exp.printIndexedBuffer("e");
//z->printIndexedBuffer("z");
ASSERT_TRUE(exp.equalsTo(z));
delete result;
delete tads;
}
TEST_F(ListOperationsTests, GraphTests_Sequential_1) {
Graph graph;
auto matrix = NDArrayFactory::create_<float>('c', {3, 3});
auto tads = matrix->allTensorsAlongDimension({1});
for (int e = 0; e < tads->size(); e++) {
tads->at(e)->assign((float) (e+1));
}
auto exp = NDArrayFactory::create<float>('c', {3, 3});
auto tadsExp = exp.allTensorsAlongDimension({1});
tadsExp->at(0)->assign(0.f);
tadsExp->at(1)->assign(-1.f);
tadsExp->at(2)->assign(-2.f);
delete tadsExp;
auto indices = NDArrayFactory::valueOf<int>({3}, 1, 'c');
//indices->linspace(0);
auto variableSpace = graph.getVariableSpace();
variableSpace->putVariable(-1, matrix);
variableSpace->putVariable(-2, indices);
auto nodeA = new Node(OpType_TRANSFORM_SAME, 0, 1, {-1});
// creating list
nd4j::ops::create_list opB;
auto nodeB = new Node(&opB, 2, {1},{},{}, 0.0f, {}, {0, 1});
//nodeB->setCustomOp(&opB);
// filling list with matrix
nd4j::ops::split_list opC;
auto nodeC = new Node(&opC, 3, {2, 1, -2});
//nodeC->setCustomOp(&opC);
// reading chunks from List. We're adding op number 3 in inputs, to ensure graph will execute this node after split
nd4j::ops::read_list opD;
auto nodeD0 = new Node(&opD, 5, {2, 3}, {},{}, 0.0f, {}, {0});
auto nodeD1 = new Node(&opD, 6, {2, 3}, {},{}, 0.0f, {}, {1});
auto nodeD2 = new Node(&opD, 7, {2, 3}, {},{}, 0.0f, {}, {2});
//nodeD0->setCustomOp(&opD);
//nodeD1->setCustomOp(&opD);
//nodeD2->setCustomOp(&opD);
// using OneMinus on each chunk separately
auto nodeE0 = new Node(OpType_TRANSFORM_SAME, nd4j::transform::OneMinus, 10, {5});
auto nodeE1 = new Node(OpType_TRANSFORM_SAME, nd4j::transform::OneMinus, 11, {6});
auto nodeE2 = new Node(OpType_TRANSFORM_SAME, nd4j::transform::OneMinus, 12, {7});
// writing chunks back to the List
nd4j::ops::write_list opF;
auto nodeF0 = new Node(&opF, 15, {2, 10}, {},{}, 0.0f, {}, {0});
auto nodeF1 = new Node(&opF, 16, {2, 11}, {},{}, 0.0f, {}, {1});
auto nodeF2 = new Node(&opF, 17, {2, 12}, {},{}, 0.0f, {}, {2});
// nodeF0->setCustomOp(&opF);
// nodeF1->setCustomOp(&opF);
// nodeF2->setCustomOp(&opF);
// now we're stacking chunks back to matrix state
nd4j::ops::stack_list opG;
auto nodeG = new Node(&opG, 20, {2, 15, 16, 17});
//auto nodeG = new Node<float>(OpType_CUSTOM, 0, 20, {2});
// nodeG->setCustomOp(&opG);
graph.addNode(nodeA);
graph.addNode(nodeB);
graph.addNode(nodeC);
graph.addNode(nodeD0);
graph.addNode(nodeD1);
graph.addNode(nodeD2);
graph.addNode(nodeE0);
graph.addNode(nodeE1);
graph.addNode(nodeE2);
graph.addNode(nodeF0);
graph.addNode(nodeF1);
graph.addNode(nodeF2);
graph.addNode(nodeG);
// let's also validate structural integrity
graph.buildGraph();
ASSERT_EQ(0, nodeA->getLayer());
ASSERT_EQ(1, nodeB->getLayer());
ASSERT_EQ(2, nodeC->getLayer());
ASSERT_EQ(3, nodeD0->getLayer());
ASSERT_EQ(3, nodeD1->getLayer());
ASSERT_EQ(3, nodeD2->getLayer());
ASSERT_EQ(4, nodeE0->getLayer());
ASSERT_EQ(4, nodeE1->getLayer());
ASSERT_EQ(4, nodeE2->getLayer());
ASSERT_EQ(5, nodeF0->getLayer());
ASSERT_EQ(5, nodeF1->getLayer());
ASSERT_EQ(5, nodeF2->getLayer());
ASSERT_EQ(6, nodeG->getLayer());
auto result = GraphExecutioner::execute(&graph);
ASSERT_EQ(ND4J_STATUS_OK, result);
ASSERT_TRUE(variableSpace->hasVariable(2));
auto list = variableSpace->getVariable(2)->getNDArrayList();
ASSERT_TRUE(list != nullptr);
ASSERT_EQ(3, list->height());
ASSERT_EQ(3, list->elements());
ASSERT_TRUE(variableSpace->hasVariable(20));
auto stack = variableSpace->getVariable(20)->getNDArray();
ASSERT_TRUE(stack != nullptr);
ASSERT_TRUE(exp.isSameShape(stack));
ASSERT_TRUE(exp.equalsTo(stack));
delete tads;
}
TEST_F(ListOperationsTests, GraphTests_Sequential_2) {
Graph graph;
auto scalar = NDArrayFactory::create_<double>(0.0f);
auto matrix = NDArrayFactory::create_<double>('c', {3, 3});
auto tads = matrix->allTensorsAlongDimension({1});
for (int e = 0; e < tads->size(); e++) {
tads->at(e)->assign((float) (e+1));
}
auto exp = NDArrayFactory::create<double>('c', {3, 3});
auto tadsExp = exp.allTensorsAlongDimension({1});
tadsExp->at(0)->assign(0.f);
tadsExp->at(1)->assign(-1.f);
tadsExp->at(2)->assign(-2.f);
//auto indices = NDArray<float>::valueOf({1, 3}, 1.0f, 'c');
auto indices = NDArrayFactory::create_<double>('c', {1, 3});
indices->linspace(0);
auto variableSpace = graph.getVariableSpace();
variableSpace->putVariable(-1, matrix);
variableSpace->putVariable(-2, indices);
variableSpace->putVariable(-3, scalar);
auto nodeA = new Node(OpType_TRANSFORM_SAME, 0, 1, {-1});
// creating list
nd4j::ops::create_list opB;
auto nodeB = new Node(&opB, 2, {1},{},{}, 0.0f, {}, {0, 1});
// nodeB->setCustomOp(&opB);
// filling list with matrix
nd4j::ops::scatter_list opC;
auto nodeC = new Node(&opC, 3, {2, -2, 1, -3});
//nodeC->setCustomOp(&opC);
nd4j::ops::read_list opD;
auto nodeD0 = new Node(&opD, 5, {2, 3}, {},{}, 0.0f, {}, {0});
auto nodeD1 = new Node(&opD, 6, {2, 3, 15}, {},{}, 0.0f, {}, {1});
auto nodeD2 = new Node(&opD, 7, {2, 3, 16}, {},{}, 0.0f, {}, {2});
// nodeD0->setCustomOp(&opD);
// nodeD1->setCustomOp(&opD);
// nodeD2->setCustomOp(&opD);
// using OneMinus on each chunk separately
auto nodeE0 = new Node(OpType_TRANSFORM_SAME, nd4j::transform::OneMinus, 10, {5});
auto nodeE1 = new Node(OpType_TRANSFORM_SAME, nd4j::transform::OneMinus, 11, {6});
auto nodeE2 = new Node(OpType_TRANSFORM_SAME, nd4j::transform::OneMinus, 12, {7});
// writing chunks back to the List
nd4j::ops::write_list opF;
auto nodeF0 = new Node(&opF, 15, {2, 10}, {},{}, 0.0f, {}, {0});
auto nodeF1 = new Node(&opF, 16, {2, 11}, {},{}, 0.0f, {}, {1});
auto nodeF2 = new Node(&opF, 17, {2, 12}, {},{}, 0.0f, {}, {2});
// nodeF0->setCustomOp(&opF);
// nodeF1->setCustomOp(&opF);
// nodeF2->setCustomOp(&opF);
// now we're gathering chunks back to matrix state
nd4j::ops::pick_list opG;
auto nodeG = new Node(&opG, 20, {2, -2, 15, 16, 17});
//auto nodeG = new Node<float>(OpType_CUSTOM, 0, 20, {2});
//nodeG->setCustomOp(&opG);
graph.addNode(nodeA);
graph.addNode(nodeB);
graph.addNode(nodeC);
graph.addNode(nodeD0);
graph.addNode(nodeD1);
graph.addNode(nodeD2);
graph.addNode(nodeE0);
graph.addNode(nodeE1);
graph.addNode(nodeE2);
graph.addNode(nodeF0);
graph.addNode(nodeF1);
graph.addNode(nodeF2);
graph.addNode(nodeG);
// let's also validate structural integrity
graph.buildGraph();
ASSERT_EQ(0, nodeA->getLayer());
ASSERT_EQ(1, nodeB->getLayer());
ASSERT_EQ(2, nodeC->getLayer());
ASSERT_EQ(3, nodeD0->getLayer());
ASSERT_EQ(4, nodeE0->getLayer());
ASSERT_EQ(5, nodeF0->getLayer());
ASSERT_EQ(6, nodeD1->getLayer());
ASSERT_EQ(7, nodeE1->getLayer());
ASSERT_EQ(8, nodeF1->getLayer());
ASSERT_EQ(9, nodeD2->getLayer());
ASSERT_EQ(10, nodeE2->getLayer());
ASSERT_EQ(11, nodeF2->getLayer());
ASSERT_EQ(12, nodeG->getLayer());
auto result = GraphExecutioner::execute(&graph);
ASSERT_EQ(ND4J_STATUS_OK, result);
ASSERT_TRUE(variableSpace->hasVariable(2));
auto list = variableSpace->getVariable(2)->getNDArrayList();
ASSERT_TRUE(list != nullptr);
ASSERT_EQ(3, list->height());
ASSERT_EQ(3, list->elements());
ASSERT_TRUE(variableSpace->hasVariable(20));
auto stack = variableSpace->getVariable(20)->getNDArray();
ASSERT_TRUE(stack != nullptr);
ASSERT_TRUE(exp.isSameShape(stack));
ASSERT_TRUE(exp.equalsTo(stack));
delete tadsExp;
delete tads;
}