cavis/libnd4j/include/ops/declarable/helpers/cpu/percentile.cpp

87 lines
3.3 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 17.05.2018
//
#include <ops/declarable/helpers/percentile.h>
#include <array/NDArrayFactory.h>
#include <array/ResultSet.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void _percentile(const NDArray& input, NDArray& output, std::vector<int>& axises, const float q, const int interpolation) {
const int inputRank = input.rankOf();
if(axises.empty())
for(int i=0; i<inputRank; ++i)
axises.push_back(i);
else
shape::checkDimensions(inputRank, axises); // check, sort dimensions and remove duplicates if they are present
auto listOfSubArrs = input.allTensorsAlongDimension(axises);
std::vector<Nd4jLong> shapeOfSubArr(listOfSubArrs.at(0)->rankOf());
for(int i=0; i<shapeOfSubArr.size(); ++i)
shapeOfSubArr[i] = listOfSubArrs.at(0)->shapeOf()[i];
auto flattenedArr = NDArrayFactory::create('c', shapeOfSubArr, input.dataType(), input.getContext());
const int len = flattenedArr.lengthOf();
const float fraction = 1.f - q / 100.;
Nd4jLong position = 0;
switch(interpolation) {
case 0: // lower
position = static_cast<Nd4jLong>(math::nd4j_ceil<float,T>((len - 1) * fraction));
break;
case 1: // higher
position = static_cast<Nd4jLong>(math::nd4j_floor<float,T>((len - 1) * fraction));
break;
case 2: // nearest
position = static_cast<Nd4jLong>(math::nd4j_round<float,T>((len - 1) * fraction));
break;
}
position = len - position - 1;
// FIXME: our sort impl should be used instead, so this operation might be implemented as generic
// FIXME: parallelism !
for(int i=0; i<listOfSubArrs.size(); ++i) {
auto buff = reinterpret_cast<T *>(flattenedArr.buffer());
flattenedArr.assign(listOfSubArrs.at(i));
std::sort(buff, buff + len);
output.p(i, flattenedArr.e<T>(position));
}
}
void percentile(sd::LaunchContext * context, const NDArray& input, NDArray& output, std::vector<int>& axises, const float q, const int interpolation) {
BUILD_SINGLE_SELECTOR(input.dataType(), _percentile, (input, output, axises, q, interpolation), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void _percentile, (const NDArray& input, NDArray& output, std::vector<int>& axises, const float q, const int interpolation), LIBND4J_TYPES);
}
}
}