Alex Black 1170827c18 Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)

* Modified strided_slice op to properly work with empty-like shapes.

* Fixed test for reduce_mean with empty-like input.

* [WIP] Last merge (#15)

* correct logsoftmax looss (#2)

* Small SameDiff listener fix (#4)

* Various fixes (#6)

* #7839 Fix for asXMatrix and tests

* #7866 EmbeddingSequenceLayer dtype fix + test

* #7856 SameDiff save/load stream methods

* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration

* EvaluationBinary 3d/4d

* More evaluation 3d/4d tests

* #7847 Evaluation empty checks

* Small test ifx

* #7848 Fix median edge case

* Improve DL4J samediff layer tests

* [WIP] FastText wrapper implemented (#8)

* FastText implemented

* Some fixes

* Fix shapes for wordsNearest

* Validation of input vectors

* Fixes

* Fixed test

* Thread tagged

* Some tweaks

* setContextClassLoader for DeallocatorServiceThread

* Numpy format tests (#1)

* Various fixes (#11)

* #7852 SameDiff gather fix

* #7892 SameDiff placeholder to constant conversion

* #7890 validate input rank for MLN/CG init methods

* Fix broken permute shape calculation

* Permute and gather fixes

* Tests

* #7850 LogSumExp fix + test

* Handful of test fixes

* Empty arrays with non-scalar shapes (#10)

* minor rearrangements for lambdas

* empty tensors with non-scalar shapes

* numpy empty tensors with non-scalar shapes

* few more empty tweaks

* Small fixes

* conv3d signature update

* micro fix in batchnorm mkldnn

* Import fixes

* Fix

* MKL-DNN update

* Small fill fix

* fill with empty input + test

* Fixes

* Small error improvement

* Fix

* one special test

* couple of fixes for lstm

* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone

* Fixes

* FP16

* Unsigned

* BFloat16

* Fill op - empty tweaks

* - couple of fixes for empty arrays construction
- stack updated

* strided slice fix

* one transform test

* provide method for reducing shapeInfo in case of input array is empty

* Fixed reduceAlongDimensions to use empty input properly.

* couple of broadcast tests

* couple of tests broadcast tests + tweak to make them pass

* add check of non-empty to methods producing sub-arrays

* Fixed reshapeC with zeros in shape.

* complete empty check in reduce_... legacy ops

* Concat and cumsum/prod

* Tweak to empty shape inference on import

* add empty check to the rest of reduce legacy ops

* one more test

* correct typo in evalReduceShapeInfoEmpty

* Added tests for reduce_* ops to tests with zero shapes.

* few more tests for empty reductions

* Fixed strided_slice op with empty case and tests.

* one more empty reduction test

* Fixed strided_slice test.

* add empty check to NDArray::reshapei

* infOrMax

* empty min/max with infinity tests

* made unstack working correctly with empty arrays

* few IndexReduce tests + tweaks for empty shapes

* add test for empty concat

* few tests fixed

* Validation fix for reductions on empty shapes

* Reverse fix

* Reduction shape calc fixes

* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs

* Range fix

* - NDArray constructor updated for scalars/empty arrays
- few tests fixed

* More fixes

* Empty creator fixes

* concat fix

* concat fix

* TF import tests: allow 'both all NaN' and 'both all inf' to pass

* Slice, zero fraction, and reshape fixes

* transpose, gather

* Zero fraction

* scalar cast fix

* Empty reduction axis support

* few more tests fixed

* Fixed input checks conforming with TF for concat op and tests.

* few tests fixed

* matmul scalar shape fix

* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.

* broadcast bool fix

* few more tests

* few more tests

* correct evalReduceShapeInfoEmpty

* argmax/argmin + tests

* one more empty edge case + one more test

* argmax/argmin/realdiv_bp tweaks

* empty reshape test + fix

* Helper fixes

* Small fixes

* Gather test fix

* Gather test fix

* Small fixes

* reduce scalar zero values

* scalar mean workaround

* Remove debug code

* along dim mean workaround

* one more test

* - equalsTo() tweak for empty arrays
- one more test

* broadcast tweaks

* [WIP] Fixing outstanding issues for NLP (#9)

* Avoid using not-inited objects

* Test fixed.

* Redundant method avoided for models like FastText

* KMeans++ implementation

* KMeans++ implementation

* Disable parallel execution

* KMeans++

* Tests

* Dev branch merge (#16)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Fix some issues on master (#17)

* Fix DataVec test issue

* Fix issue with dl4j SameDiff output layer

* Dtype fix for lambda layers

* #7912 BertIterator dtype fix (use float32 not global default)

* [WIP] Next set of CUDA stuff (#7)

New CUDA implementations and improvements

* bad file

* Dev branch master merge (#23)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Compatibility of deserialization (#18)

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* SameDiff: add activation gradient checking support for debugging (#19)

* SameDiff gradient checker: first pass on activation gradient checks

* Fixes + tests for activation gradient checking

* Javadoc

* [WIP] Some nd4j data type corrections (#20)

* Adjust data type

* Set correct Data type.

* Size of proper data type.

* fix averaged cpu load (#22)

* SameDiff ops, TF import and fixes (#24)

* CheckNumerics tests + fixes + misc fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fake quant

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* FakeQuantWithMinMaxArgs

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* CheckNumerics fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Javadoc

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Exception tweak

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix for out of scope stack allocated var use

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Ignores

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Ignore for known failing test (already logged issue)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Merge upstream to fork (#25)

* Add thousand-separator commas to TotalParams (#7915)

* Add thousand-separator commas to TotalParams

The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.

* Add thousand-separator commas to MultiLayerNetwork

Corresponding change to MultiLayerNetwork

Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>

* Update contributing and issue/PR templates (#7934)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix link to AdaDelta paper (#7942)

Fix link to AdaDelta paper hosted on matthewzeiler.com

Signed-off-by: Jxtps

* Fixes, and ignores for known/logged failing issues (#7943)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* SameDiff + DL4J/SameDiff: Multiple fixes (#28)

* #7919 HDF5 attribute buffer length fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7909 Arbiter constructor exception ux improvements

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7925 RNN output layer length checks

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7939 Add listener for validating inputs are not incorrectly modified

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7939 Integrate NonInplaceValidationListener into tests

* #7844 DL4J SameDiff fixes for variable minibatch size

* DL4J SameDiff fixes - ensure gradient for input placeholder is available

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tweaks to ExternalErrorsFunction - use placeholders, make more robust

* Another fix

* More fixes

* More SameDiff/DL4J fixes

* Scope out scalar array creation in BaseScalarOp

* Remove debug code

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] Final dev branch merge (#29)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Compatibility of deserialization (#18)

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* SameDiff: add activation gradient checking support for debugging (#19)

* SameDiff gradient checker: first pass on activation gradient checks

* Fixes + tests for activation gradient checking

* Javadoc

* [WIP] Some nd4j data type corrections (#20)

* Adjust data type

* Set correct Data type.

* Size of proper data type.

* fix averaged cpu load (#22)

* [WIP] Multiple dataset iterators (#27)

* Splitting dataset into arbitrary number

* Fixes

* Multiple split of iterator

* Test

* Test

* Some fixes

* signature change

* one more tweak

Signed-off-by: raver119 <raver119@gmail.com>

* one more test for sequential use of DataSetIteratorSplitter

Signed-off-by: raver119 <raver119@gmail.com>

* Fixes

* Fixes

* one more test for Alexander

Signed-off-by: raver119 <raver119@gmail.com>

* Some fixes

* Some fixes

* one more test for Alexander

Signed-off-by: raver119 <raver119@gmail.com>

* minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Some fixes

* Some fixes

* couple of assertions tweaked

Signed-off-by: raver119 <raver119@gmail.com>

* MDS splitter test :/

Signed-off-by: raver119 <raver119@gmail.com>

* Minor refactoring

* Multi dataset

* Some fixes

* More tests

* Small number of test fixes/improvements (failures on CI) (#31)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] More CUDA stuff (#26)

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* LRN BP CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* less memory

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed bug with crop_and_resize op helper.

* get rid of unnecessary index-calculation dunction

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed sort with nth_element cuda-based helper.

* Refactored nth_element.

* Refactored nth_element op and tests.

* Modified usage of dim array with sortTad routine.

* Refactored main routine of helper for non_max_image_suppression op.

* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.

* fix vol2col cuda kernel

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* topK concept

Signed-off-by: raver119 <raver119@gmail.com>

* unsorted topK with scanWitdh of 1

Signed-off-by: raver119 <raver119@gmail.com>

* correct vol2col tests

* sorted/unsorted topK

Signed-off-by: raver119 <raver119@gmail.com>

* implementation and fixing col2im/col2vol

* Corrected usage flags with input/output with reverse op.

* dup is const now

Signed-off-by: raver119 <raver119@gmail.com>

* percentile op

Signed-off-by: raver119 <raver119@gmail.com>

* group tests for mapool2d

Signed-off-by: Yurii <yurii@skymind.io>

* special test for george

Signed-off-by: raver119 <raver119@gmail.com>

* less threads for sortTad

Signed-off-by: raver119 <raver119@gmail.com>

* provide conv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* remove auther in sort tad kernel code

Signed-off-by: Yurii <yurii@skymind.io>

* provide depthwise_conv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* - max_pooling_with_argmax
- null check for special use

Signed-off-by: raver119 <raver119@gmail.com>

* dts cuda

Signed-off-by: raver119 <raver119@gmail.com>

* provide sconv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* std cuda

Signed-off-by: raver119 <raver119@gmail.com>

* Refactored non_max_suppression op to conform TF implementation.

* Improved suppression helper.

* provide pooling3d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* minor lstm rearrangements

Signed-off-by: raver119 <raver119@gmail.com>

* more of minor lstm rearrangements

Signed-off-by: raver119 <raver119@gmail.com>

* (bi)dynamic_rnn

Signed-off-by: raver119 <raver119@gmail.com>

* templates init order

Signed-off-by: raver119 <raver119@gmail.com>

* Refactored non_max_suppression op.

* Added cuda kernel for non_max_suppression.

* CPU sort by key/value

Signed-off-by: raver119 <raver119@gmail.com>

* CPU sort TAD by key/value

Signed-off-by: raver119 <raver119@gmail.com>

* CPU sort TAD by key/value tests

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminate compiler error with cuda implementation.

* - repaired gradCheck in cuda
- provide conv2d_bp for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* missed signature

Signed-off-by: raver119 <raver119@gmail.com>

* provide depthwise_conv2d_bp for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of lup helper with cuda kernel. Initial commit.

* further work on backprops for convolutions

Signed-off-by: Yurii <yurii@skymind.io>

* CUDA linear sort by key/val

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA tad sort by key/val

Signed-off-by: raver119 <raver119@gmail.com>

* start providing of backprop for pooling2d/3d

Signed-off-by: Yurii <yurii@skymind.io>

* Added atomicAdd for bool datatype.

* dynamic partition concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic partition concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic partition scalar CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* important comment

Signed-off-by: raver119 <raver119@gmail.com>

* fix pooling2d/3d backprop helpers

Signed-off-by: Yurii <yurii@skymind.io>

* Added non-linear test with dynamic_partition.

* Improved test for dynamic_partition.

* dynamic_partition TAD concept

Signed-off-by: raver119 <raver119@gmail.com>

* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix

Signed-off-by: raver119 <raver119@gmail.com>

* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d

Signed-off-by: Yurii <yurii@skymind.io>

* dynamic_stitch CUDA vector case

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic_stitch CUDA TAD case concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic_stitch CUDA TAD case impl

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for dynamic_stitch 3D-4D cases.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed type check for dynamic stitch.

* min/max bp

Signed-off-by: raver119 <raver119@gmail.com>

* rewrite code for upsampling2d/3d cpu

Signed-off-by: Yurii <yurii@skymind.io>

* reduce min/max/norm_max bp

Signed-off-by: raver119 <raver119@gmail.com>

* lup implementation. Additional enhancements.

* provide code for upsamling2d/3d backprop

Signed-off-by: Yurii <yurii@skymind.io>

* weightedCrossEntropyWithLogits

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed template math atomicMul for 64bit ints.

* Refactored dynamic_partition_bp op.

* inverseBroadcast fix

Signed-off-by: raver119 <raver119@gmail.com>

* DynamicPartitionBP test datatype fixed.

* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA

Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 18:37:04 +03:00

2163 lines
128 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author GS <sgazeos@gmail.com>
//
#include <ops/declarable/helpers/segment.h>
#include <NDArrayFactory.h>
#include <helpers/ShapeUtils.h>
#include <helpers/TAD.h>
#include <exceptions/cuda_exception.h>
#include <PointersManager.h>
#include <ConstantTadHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
// -------------------------------------------------------------------------------------------------------------- //
// Segment ops linear kernels
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static __global__ void segmentMaxLinearKernel(void* input, Nd4jLong* inputShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong* outputShape) {
__shared__ T* val;
__shared__ Nd4jLong xLen, zLen, segment, zIndex;
__shared__ T* x;
__shared__ T* z;
__shared__ int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses;
segment = blockIdx.x / threadsPerSegment;
x = reinterpret_cast<T*>(input);
z = reinterpret_cast<T*>(output);
extern __shared__ unsigned char shmem[];
val = reinterpret_cast<T*>(shmem);
xLen = shape::length(inputShape);
zLen = shape::length(outputShape);
if (segment < numOfClasses) {
zIndex = shape::getIndexOffset(segment, outputShape, zLen);
start = starts[segment];
finish = start + lengths[segment];
z[zIndex] = x[shape::getIndexOffset(start, inputShape, xLen)];
val[segment] = z[zIndex];
}
}
__syncthreads();
for (auto e = start + threadIdx.x + 1; e < finish; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
nd4j::math::atomics::nd4j_atomicMax(&z[zIndex], x[xIndex]);
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static __global__ void unsortedSegmentMaxLinearKernel(void* input, Nd4jLong* inputShape, void* indices, Nd4jLong* indicesShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong* outputShape) {
__shared__ T* val;
__shared__ Nd4jLong xLen, zLen, segment, zIndex;
__shared__ T* x;
__shared__ T* z;
__shared__ I* y; //int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
segment = blockIdx.x;
x = reinterpret_cast<T*>(input);
z = reinterpret_cast<T*>(output);
y = reinterpret_cast<I*>(indices);
xLen = shape::length(inputShape);
zLen = shape::length(outputShape);
zIndex = shape::getIndexOffset(segment, outputShape, zLen);
//start = starts[segment];
//finish = start + lengths[segment];
if (lengths[segment] > 0)
z[zIndex] = x[shape::getIndexOffset(starts[segment], inputShape, xLen)];
else
z[zIndex] = -DataTypeUtils::max<T>();
}
__syncthreads();
if (lengths[segment] > 0)
for (auto e = threadIdx.x + 1; e < xLen; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
auto yIndex = shape::getIndexOffset(e, indicesShape, xLen);
if (y[yIndex] == segment) {
nd4j::math::atomics::nd4j_atomicMax(&z[zIndex], x[xIndex]);
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static __global__ void segmentMinLinearKernel(void* input, Nd4jLong* inputShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong* outputShape) {
__shared__ T* val;
__shared__ Nd4jLong xLen, zLen, segment, zIndex;
__shared__ T* x;
__shared__ T* z;
__shared__ int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses;
segment = blockIdx.x / threadsPerSegment;
x = reinterpret_cast<T*>(input);
z = reinterpret_cast<T*>(output);
extern __shared__ unsigned char shmem[];
val = reinterpret_cast<T*>(shmem);
xLen = shape::length(inputShape);
zLen = shape::length(outputShape);
if (segment < numOfClasses) {
zIndex = shape::getIndexOffset(segment, outputShape, zLen);
start = starts[segment];
finish = start + lengths[segment];
z[zIndex] = x[shape::getIndexOffset(start, inputShape, xLen)];
val[segment] = z[zIndex];
}
}
__syncthreads();
for (auto e = start + threadIdx.x + 1; e < finish; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
nd4j::math::atomics::nd4j_atomicMin(&z[zIndex], x[xIndex]);
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static __global__ void unsortedSegmentMinLinearKernel(void* input, Nd4jLong* inputShape, void* indices, Nd4jLong* indicesShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong* outputShape) {
__shared__ T* val;
__shared__ Nd4jLong xLen, zLen, segment, zIndex;
__shared__ T* x;
__shared__ T* z;
__shared__ I* y; //int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
segment = blockIdx.x;
x = reinterpret_cast<T*>(input);
z = reinterpret_cast<T*>(output);
y = reinterpret_cast<I*>(indices);
xLen = shape::length(inputShape);
zLen = shape::length(outputShape);
zIndex = shape::getIndexOffset(segment, outputShape, zLen);
if (lengths[segment] > 0)
z[zIndex] = x[shape::getIndexOffset(starts[segment], inputShape, xLen)];
else
z[zIndex] = DataTypeUtils::max<T>();
}
__syncthreads();
if (lengths[segment] > 0)
for (auto e = threadIdx.x + 1; e < xLen; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
auto yIndex = shape::getIndexOffset(e, indicesShape, xLen);
if (y[yIndex] == segment) {
nd4j::math::atomics::nd4j_atomicMin(&z[zIndex], x[xIndex]);
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static __global__ void segmentSumLinearKernel(void* input, Nd4jLong* inputShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong* outputShape) {
__shared__ T* val;
__shared__ Nd4jLong xLen, zLen, segment, zIndex;
__shared__ T* x;
__shared__ T* z;
__shared__ int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses;
segment = blockIdx.x / threadsPerSegment;
x = reinterpret_cast<T*>(input);
z = reinterpret_cast<T*>(output);
xLen = shape::length(inputShape);
zLen = shape::length(outputShape);
if (segment < numOfClasses) {
zIndex = shape::getIndexOffset(segment, outputShape, zLen);
start = starts[segment];
finish = start + lengths[segment];
//val[segment] = ;
z[zIndex] = x[shape::getIndexOffset(start, inputShape, xLen)];
}
}
__syncthreads();
for (auto e = start + threadIdx.x + 1; e < finish; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
nd4j::math::atomics::nd4j_atomicAdd(&z[zIndex], x[xIndex]);
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static __global__ void unsortedSegmentSumLinearKernel(void* input, Nd4jLong* inputShape, void* indices, Nd4jLong* indicesShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong* outputShape) {
__shared__ T* val;
__shared__ Nd4jLong xLen, zLen, segment, zIndex;
__shared__ T* x;
__shared__ T* z;
__shared__ I* y; //int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
segment = blockIdx.x;
x = reinterpret_cast<T*>(input);
z = reinterpret_cast<T*>(output);
y = reinterpret_cast<I*>(indices);
xLen = shape::length(inputShape);
zLen = shape::length(outputShape);
zIndex = shape::getIndexOffset(segment, outputShape, zLen);
if (lengths[segment] > 0)
z[zIndex] = x[shape::getIndexOffset(starts[segment], inputShape, xLen)];
else
z[zIndex] = 0; //DataTypeUtils::max<T>();
}
__syncthreads();
if (lengths[segment] > 0)
for (auto e = threadIdx.x; e < xLen; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
auto yIndex = shape::getIndexOffset(e, indicesShape, xLen);
if (y[yIndex] == segment && e != starts[segment]) {
nd4j::math::atomics::nd4j_atomicAdd(&z[zIndex], x[xIndex]);
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static __global__ void segmentMeanLinearKernel(void* input, Nd4jLong* inputShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong* outputShape) {
__shared__ T* val;
__shared__ Nd4jLong xLen, zLen, segment, zIndex;
__shared__ T* x;
__shared__ T* z;
__shared__ int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses;
segment = blockIdx.x / threadsPerSegment;
x = reinterpret_cast<T*>(input);
z = reinterpret_cast<T*>(output);
// extern __shared__ unsigned char shmem[];
// val = reinterpret_cast<T*>(shmem);
xLen = shape::length(inputShape);
zLen = shape::length(outputShape);
//[zIndex] =
if (segment < numOfClasses) {
zIndex = shape::getIndexOffset(segment, outputShape, zLen);
start = starts[segment];
finish = start + lengths[segment];
//val[segment] = ;
z[zIndex] = T(x[shape::getIndexOffset(start, inputShape, xLen)] / lengths[segment]);
// val[segment] = z[zIndex];
}
}
__syncthreads();
for (auto e = start + threadIdx.x + 1; e < finish; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
if (lengths[segment])
nd4j::math::atomics::nd4j_atomicAdd(&z[zIndex], T(x[xIndex] / lengths[segment]));
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static __global__ void unsortedSegmentMeanLinearKernel(void* input, Nd4jLong* inputShape, void* indices, Nd4jLong* indicesShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong* outputShape) {
__shared__ T* val;
__shared__ Nd4jLong xLen, zLen, segment, zIndex;
__shared__ T* x;
__shared__ T* z;
__shared__ I* y; //int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
// threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses;
segment = blockIdx.x;// / threadsPerSegment;
x = reinterpret_cast<T*>(input);
z = reinterpret_cast<T*>(output);
y = reinterpret_cast<I*>(indices);
// extern __shared__ unsigned char shmem[];
// val = reinterpret_cast<T*>(shmem);
xLen = shape::length(inputShape);
zLen = shape::length(outputShape);
// if (segment < numOfClasses) {
zIndex = shape::getIndexOffset(segment, outputShape, zLen);
//start = starts[segment];
//finish = start + lengths[segment];
if (lengths[segment] > 0)
z[zIndex] = T(x[shape::getIndexOffset(starts[segment], inputShape, xLen)] / T(lengths[segment]));
else
z[zIndex] = 0; //DataTypeUtils::max<T>();
// val[segment] = z[zIndex];
// }
}
__syncthreads();
if (lengths[segment] > 0)
for (auto e = threadIdx.x; e < xLen; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
auto yIndex = shape::getIndexOffset(e, indicesShape, xLen);
if (y[yIndex] == segment && e != starts[segment]) {
nd4j::math::atomics::nd4j_atomicAdd(&z[zIndex], T(x[xIndex]/T(lengths[segment])));
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static __global__ void segmentProdLinearKernel(void* input, Nd4jLong* inputShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong* outputShape) {
__shared__ T* val;
__shared__ Nd4jLong xLen, zLen, segment, zIndex;
__shared__ T* x;
__shared__ T* z;
__shared__ int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses;
segment = blockIdx.x / threadsPerSegment;
x = reinterpret_cast<T*>(input);
z = reinterpret_cast<T*>(output);
extern __shared__ unsigned char shmem[];
val = reinterpret_cast<T*>(shmem);
xLen = shape::length(inputShape);
zLen = shape::length(outputShape);
if (segment < numOfClasses) {
zIndex = shape::getIndexOffset(segment, outputShape, zLen);
start = starts[segment];
finish = start + lengths[segment];
//val[segment] = ;
z[zIndex] = x[shape::getIndexOffset(start, inputShape, xLen)];
val[segment] = z[zIndex];
}
}
__syncthreads();
// auto tid = threadIdx.x + blockIdx.x * blockDim.x;
// auto step = blockDim.x * gridDim.x;
for (auto e = start + threadIdx.x + 1; e < finish; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
nd4j::math::atomics::nd4j_atomicMul(&val[segment], x[xIndex]);
}
__syncthreads();
if (threadIdx.x == 0) {
z[zIndex] = val[segment];
}
}
template <typename T, typename I>
static __global__ void unsortedSegmentProdLinearKernel(void* input, Nd4jLong* inputShape, void* indices, Nd4jLong* indicesShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong* outputShape) {
__shared__ T* val;
__shared__ Nd4jLong xLen, zLen, segment, zIndex;
__shared__ T* x;
__shared__ T* z;
__shared__ I* y; //int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
// threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses;
segment = blockIdx.x;// / threadsPerSegment;
x = reinterpret_cast<T*>(input);
z = reinterpret_cast<T*>(output);
y = reinterpret_cast<I*>(indices);
// extern __shared__ unsigned char shmem[];
// val = reinterpret_cast<T*>(shmem);
xLen = shape::length(inputShape);
zLen = shape::length(outputShape);
// if (segment < numOfClasses) {
zIndex = shape::getIndexOffset(segment, outputShape, zLen);
//start = starts[segment];
//finish = start + lengths[segment];
if (lengths[segment] > 0)
z[zIndex] = x[shape::getIndexOffset(starts[segment], inputShape, xLen)];
else
z[zIndex] = 0; //DataTypeUtils::max<T>();
// val[segment] = z[zIndex];
// }
}
__syncthreads();
if (lengths[segment] > 0)
for (auto e = threadIdx.x; e < xLen; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
auto yIndex = shape::getIndexOffset(e, indicesShape, xLen);
if (y[yIndex] == segment && e != starts[segment]) {
nd4j::math::atomics::nd4j_atomicMul(&z[zIndex], x[xIndex]);
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static __global__ void unsortedSegmentSqrtNLinearKernel(void* input, Nd4jLong* inputShape, void* indices, Nd4jLong* indicesShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong* outputShape) {
__shared__ T* val;
__shared__ Nd4jLong xLen, zLen, segment, zIndex;
__shared__ T* x;
__shared__ T* z;
__shared__ I* y; //int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
// threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses;
segment = blockIdx.x;// / threadsPerSegment;
x = reinterpret_cast<T*>(input);
z = reinterpret_cast<T*>(output);
y = reinterpret_cast<I*>(indices);
// extern __shared__ unsigned char shmem[];
// val = reinterpret_cast<T*>(shmem);
xLen = shape::length(inputShape);
zLen = shape::length(outputShape);
// if (segment < numOfClasses) {
zIndex = shape::getIndexOffset(segment, outputShape, zLen);
//start = starts[segment];
//finish = start + lengths[segment];
if (lengths[segment] > 0)
z[zIndex] = x[shape::getIndexOffset(starts[segment], inputShape, xLen)] / nd4j::math::nd4j_sqrt<int, T>(lengths[segment]);
else
z[zIndex] = 0; //DataTypeUtils::max<T>();
// val[segment] = z[zIndex];
// }
}
__syncthreads();
if (lengths[segment] > 0)
for (auto e = threadIdx.x + 1; e < xLen; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
auto yIndex = shape::getIndexOffset(e, indicesShape, xLen);
if (y[yIndex] == segment && e != starts[segment]) {
nd4j::math::atomics::nd4j_atomicAdd(&z[zIndex], x[xIndex] / nd4j::math::nd4j_sqrt<int, T>(lengths[segment]));
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
// fill up segments starts and ends - splitted ordered case
template <typename I>
static __global__ void fillUpSegmentsKernel(void* indices, Nd4jLong* indexShape, int numClasses, int* classesRangesStart, int* classesRangesLenghts) {
__shared__ I* idxBuf;
__shared__ Nd4jLong idxLen;
__shared__ int* result;
if (threadIdx.x == 0) {
idxBuf = reinterpret_cast<I*>(indices);
idxLen = shape::length(indexShape);
}
__syncthreads();
auto tid = threadIdx.x + blockDim.x * blockIdx.x;
auto step = blockDim.x * gridDim.x;
for (auto j = tid; j < idxLen; j += step) {
auto pos = idxBuf[j];
nd4j::math::atomics::nd4j_atomicMin(&classesRangesStart[pos], (int)j);
nd4j::math::atomics::nd4j_atomicAdd(&classesRangesLenghts[pos], 1);
}
}
// -------------------------------------------------------------------------------------------------------------- //
// -------------------------------------------------------------------------------------------------------------- //
// fill up segments starts and counts - cumulative case
template <typename I>
static __global__ void fillUpUnsortedSegmentsKernel(void* indices, Nd4jLong* indexShape, int numClasses, int* classes) {
__shared__ I* idxBuf;
__shared__ Nd4jLong idxLen;
__shared__ int* result;
if (threadIdx.x == 0) {
idxBuf = reinterpret_cast<I*>(indices);
idxLen = shape::length(indexShape);
}
__syncthreads();
auto tid = threadIdx.x + blockDim.x * blockIdx.x;
auto step = blockDim.x * gridDim.x;
for (auto j = tid; j < idxLen; j += step) {
auto k = idxBuf[j];
auto beginPos = 2 * k;
auto sizePos = beginPos + 1;
printf("%d, %d\n", beginPos, sizePos);
nd4j::math::atomics::nd4j_atomicMin(&classes[beginPos], (int)j);
nd4j::math::atomics::nd4j_atomicAdd(&classes[sizePos], 1);
}
}
// -------------------------------------------------------------------------------------------------------------- //
// -------------------------------------------------------------------------------------------------------------- //
// segment ops multidimentional cases
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static __global__ void segmentMaxTadKernel(void* inputBuf, Nd4jLong* inputShape, Nd4jLong* inputTads,
Nd4jLong* inputTadOffsets, I* indices, int* starts, int* lengths, Nd4jLong numOfClasses, void* outputBuf,
Nd4jLong* outputShape, Nd4jLong* outputTads, Nd4jLong* outputTadOffsets, T filler = 0) {
__shared__ T* val;
__shared__ Nd4jLong len, segment, zIndex, total;
__shared__ T* z;
__shared__ int start, finish;
if (threadIdx.x == 0) {
segment = indices[blockIdx.x]; // / threadsPerSegment;
z = reinterpret_cast<T*>(outputBuf) + outputTadOffsets[segment];
len = shape::length(inputTads);
start = starts[segment];
finish = start + lengths[segment];
total = shape::sizeAt(inputShape, 0);
}
__syncthreads();
auto idx = blockIdx.x;
if (blockIdx.x <= total) {
auto x = reinterpret_cast<T *>(inputBuf) + inputTadOffsets[idx];
if (blockIdx.x == start) {
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputTads, len);
auto zIndex = shape::getIndexOffset(e, outputTads, len);
z[zIndex] = x[xIndex];
}
}
else {
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputTads, len);
auto zIndex = shape::getIndexOffset(e, outputTads, len);
nd4j::math::atomics::nd4j_atomicMax(&z[zIndex], x[xIndex]);
}
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
// SegmentMin kernel
template <typename T, typename I>
static __global__ void segmentMinTadKernel(void* inputBuf, Nd4jLong* inputShape, Nd4jLong* inputTads, Nd4jLong* inputTadOffsets, I* indices, int* starts, int* lengths, Nd4jLong numOfClasses, void* outputBuf, Nd4jLong* outputShape, Nd4jLong* outputTads, Nd4jLong* outputTadOffsets) {
__shared__ T* val;
__shared__ Nd4jLong len, segment, zIndex, total;
__shared__ T* z;
__shared__ int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
segment = indices[blockIdx.x]; // / threadsPerSegment;
z = reinterpret_cast<T*>(outputBuf) + outputTadOffsets[segment];
len = shape::length(inputTads);
start = starts[segment];
finish = start + lengths[segment];
total = shape::sizeAt(inputShape, 0);
}
__syncthreads();
auto idx = blockIdx.x;
if (blockIdx.x <= total) {
auto x = reinterpret_cast<T *>(inputBuf) + inputTadOffsets[idx];
if (blockIdx.x == start) {
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputTads, len);
auto zIndex = shape::getIndexOffset(e, outputTads, len);
z[zIndex] = x[xIndex];
}
}
else {
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputTads, len);
auto zIndex = shape::getIndexOffset(e, outputTads, len);
nd4j::math::atomics::nd4j_atomicMin(&z[zIndex], x[xIndex]);
}
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
// SegmentSum kernel
template <typename T, typename I>
static __global__ void segmentSumTadKernel(void* inputBuf, Nd4jLong* inputShape, Nd4jLong* inputTads, Nd4jLong* inputTadOffsets, I* indices, int* starts, int* lengths, Nd4jLong numOfClasses, void* outputBuf, Nd4jLong* outputShape, Nd4jLong* outputTads, Nd4jLong* outputTadOffsets) {
__shared__ T* val;
__shared__ Nd4jLong len, segment, zIndex, total;
__shared__ T* z;
__shared__ int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
segment = indices[blockIdx.x]; // / threadsPerSegment;
z = reinterpret_cast<T*>(outputBuf) + outputTadOffsets[segment];
len = shape::length(inputTads);
start = starts[segment];
finish = start + lengths[segment];
total = shape::sizeAt(inputShape, 0);
}
__syncthreads();
auto idx = blockIdx.x;
if (blockIdx.x <= total) {
auto x = reinterpret_cast<T *>(inputBuf) + inputTadOffsets[idx];
if (blockIdx.x == start) {
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputTads, len);
auto zIndex = shape::getIndexOffset(e, outputTads, len);
z[zIndex] = x[xIndex];
}
}
else {
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputTads, len);
auto zIndex = shape::getIndexOffset(e, outputTads, len);
if (lengths[segment])
nd4j::math::atomics::nd4j_atomicAdd(&z[zIndex], x[xIndex]);
}
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
// SegmentMean kernel
template <typename T, typename I>
static __global__ void segmentMeanTadKernel(void* inputBuf, Nd4jLong* inputShape, Nd4jLong* inputTads, Nd4jLong* inputTadOffsets, I* indices, int* starts, int* lengths, Nd4jLong numOfClasses, void* outputBuf, Nd4jLong* outputShape, Nd4jLong* outputTads, Nd4jLong* outputTadOffsets) {
__shared__ T* val;
__shared__ Nd4jLong len, segment, zIndex, total;
__shared__ T* z;
__shared__ int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
segment = indices[blockIdx.x]; // / threadsPerSegment;
z = reinterpret_cast<T*>(outputBuf) + outputTadOffsets[segment];
len = shape::length(inputTads);
start = starts[segment];
finish = start + lengths[segment];
total = shape::sizeAt(inputShape, 0);
}
__syncthreads();
auto idx = blockIdx.x;
if (blockIdx.x <= total) {
auto x = reinterpret_cast<T *>(inputBuf) + inputTadOffsets[idx];
if (blockIdx.x == start) {
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputTads, len);
auto zIndex = shape::getIndexOffset(e, outputTads, len);
z[zIndex] = T(x[xIndex]/lengths[segment]);
}
}
else {
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputTads, len);
auto zIndex = shape::getIndexOffset(e, outputTads, len);
if (lengths[segment])
nd4j::math::atomics::nd4j_atomicAdd(&z[zIndex], T(x[xIndex]/lengths[segment]));
}
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
// SegmentProd kernel
template <typename T, typename I>
static __global__ void segmentProdTadKernel(void* inputBuf, Nd4jLong* inputShape, Nd4jLong* inputTads, Nd4jLong* inputTadOffsets, I* indices, int* starts, int* lengths, Nd4jLong numOfClasses, void* outputBuf, Nd4jLong* outputShape, Nd4jLong* outputTads, Nd4jLong* outputTadOffsets) {
__shared__ T* val;
__shared__ Nd4jLong len, segment, zIndex, total;
__shared__ T* z;
__shared__ int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
segment = indices[blockIdx.x]; // / threadsPerSegment;
z = reinterpret_cast<T*>(outputBuf) + outputTadOffsets[segment];
len = shape::length(inputTads);
start = starts[segment];
finish = start + lengths[segment];
total = shape::sizeAt(inputShape, 0);
}
__syncthreads();
auto idx = blockIdx.x;
if (blockIdx.x <= total) {
auto x = reinterpret_cast<T *>(inputBuf) + inputTadOffsets[idx];
if (blockIdx.x == start) {
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputTads, len);
auto zIndex = shape::getIndexOffset(e, outputTads, len);
z[zIndex] = x[xIndex];
}
}
else {
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputTads, len);
auto zIndex = shape::getIndexOffset(e, outputTads, len);
nd4j::math::atomics::nd4j_atomicMul(&z[zIndex], x[xIndex]);
}
}
}
}
// SegmentSqrtN kernel
template <typename T, typename I>
static __global__ void segmentSqrtNTadKernel(void* inputBuf, Nd4jLong* inputShape, Nd4jLong* inputTads, Nd4jLong* inputTadOffsets, I* indices, int* starts, int* lengths, Nd4jLong numOfClasses, void* outputBuf, Nd4jLong* outputShape, Nd4jLong* outputTads, Nd4jLong* outputTadOffsets) {
__shared__ T* val;
__shared__ Nd4jLong len, segment, zIndex, total;
__shared__ T* z;
__shared__ int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
segment = indices[blockIdx.x]; // / threadsPerSegment;
z = reinterpret_cast<T*>(outputBuf) + outputTadOffsets[segment];
len = shape::length(inputTads);
start = starts[segment];
finish = start + lengths[segment];
total = shape::sizeAt(inputShape, 0);
}
__syncthreads();
auto idx = blockIdx.x;
if (blockIdx.x <= total) {
auto x = reinterpret_cast<T *>(inputBuf) + inputTadOffsets[idx];
if (blockIdx.x == start) {
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputTads, len);
auto zIndex = shape::getIndexOffset(e, outputTads, len);
z[zIndex] = x[xIndex] / nd4j::math::nd4j_sqrt<int, T>(lengths[segment]);
}
}
else {
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputTads, len);
auto zIndex = shape::getIndexOffset(e, outputTads, len);
nd4j::math::atomics::nd4j_atomicAdd(&z[zIndex], x[xIndex] / nd4j::math::nd4j_sqrt<int, T>(lengths[segment]));
}
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
// Sorted segments ops implementations
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static void segmentMaxFunctor_(LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output) {
//int numClasses = output->sizeAt(0);
// if input is a vector: (as if in doc sample)
//Nd4jLong idx = indices->e<Nd4jLong>(0);
auto stream = context->getCudaStream();
Nd4jLong numClasses = indices->e<Nd4jLong>(indices->lengthOf() - 1) + 1;
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numClasses});
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numClasses});
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(256, 512, 256);
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numClasses, begins, lengths);
NDArray::prepareSpecialUse({output}, {input, indices, &classesRangesBegs, &classesRangesLens});
if (input->isVector()) {
segmentMaxLinearKernel<T,I><<<numClasses, input->lengthOf(), numClasses * 32 + 32, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
segmentMaxTadKernel<T,I><<<input->sizeAt(0), 512, 2048, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
}
NDArray::registerSpecialUse({output}, {input, indices, &classesRangesBegs, &classesRangesLens});
}
// segmen min
template <typename T, typename I>
static void segmentMinFunctor_(LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output) {
auto stream = context->getCudaStream();
Nd4jLong numClasses = indices->e<Nd4jLong>(indices->lengthOf() - 1) + 1;
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numClasses});
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numClasses});
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32);
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numClasses, begins, lengths);
NDArray::prepareSpecialUse({output}, {input, indices, &classesRangesBegs, &classesRangesLens});
if (input->isVector()) {
segmentMinLinearKernel<T,I><<<numClasses, input->lengthOf(), numClasses * 32 + 32, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
segmentMinTadKernel<T,I><<<input->sizeAt(0), 512, 2048, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
}
NDArray::registerSpecialUse({output}, {input, indices, &classesRangesBegs, &classesRangesLens});
}
// segmen mean
template <typename T, typename I>
static void segmentMeanFunctor_(LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output) {
auto stream = context->getCudaStream();
Nd4jLong numClasses = indices->e<Nd4jLong>(indices->lengthOf() - 1) + 1;
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numClasses});
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numClasses});
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32);
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numClasses, begins, lengths);
if (input->isVector()) {
segmentMeanLinearKernel<T,I><<<numClasses, input->lengthOf(), numClasses * 32 + 32, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
segmentMeanTadKernel<T,I><<<input->sizeAt(0), 512, 2048, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
}
}
template <typename T, typename I>
static void segmentSumFunctor_(nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output) {
auto stream = context->getCudaStream();
Nd4jLong numClasses = indices->e<Nd4jLong>(indices->lengthOf() - 1) + 1;
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numClasses});
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numClasses});
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32);
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numClasses, begins, lengths);
if (input->isVector()) {
segmentSumLinearKernel<T,I><<<numClasses, input->lengthOf(), numClasses * 32 + 32, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
segmentSumTadKernel<T,I><<<input->sizeAt(0), 512, 2048, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
}
}
template <typename T, typename I>
static void segmentProdFunctor_(nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output) {
auto stream = context->getCudaStream();
Nd4jLong numClasses = indices->e<Nd4jLong>(indices->lengthOf() - 1) + 1;
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numClasses});
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numClasses});
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32);
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numClasses, begins, lengths);
if (input->isVector()) {
segmentProdLinearKernel<T,I><<<numClasses, input->lengthOf(), numClasses * 32 + 32, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
segmentProdTadKernel<T,I><<<input->sizeAt(0), 512, 2048, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
}
}
template <typename T, typename I>
static bool segmentIndicesValidate_(NDArray* indices, NDArray& aexpected, NDArray& aoutput) {
return true;
}
void segmentMaxFunctor(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* output) {
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), segmentMaxFunctor_, (context, input, indices, output), NUMERIC_TYPES, INTEGER_TYPES);
}
void segmentMinFunctor(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* output) {
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), segmentMinFunctor_, (context, input, indices, output), NUMERIC_TYPES, INTEGER_TYPES);
}
void segmentMeanFunctor(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* output) {
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), segmentMeanFunctor_, (context, input, indices, output), FLOAT_TYPES, INTEGER_TYPES);
}
void segmentSumFunctor(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* output) {
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), segmentSumFunctor_, (context, input, indices, output), NUMERIC_TYPES, INTEGER_TYPES);
}
void segmentProdFunctor(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* output) {
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), segmentProdFunctor_, (context, input, indices, output), NUMERIC_TYPES, INTEGER_TYPES);
}
bool segmentIndicesValidate(nd4j::LaunchContext* context , NDArray* indices, NDArray& expected, NDArray& output) {
BUILD_DOUBLE_SELECTOR(output.dataType(), indices->dataType(), return segmentIndicesValidate_, (indices, expected, output), NUMERIC_TYPES, INTEGER_TYPES);
}
BUILD_DOUBLE_TEMPLATE(template bool segmentIndicesValidate_, (NDArray*, NDArray&, NDArray&), NUMERIC_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template void segmentProdFunctor_, (nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output), FLOAT_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template void segmentSumFunctor_, (nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output), NUMERIC_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template void segmentMeanFunctor_, (nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output), FLOAT_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template void segmentMinFunctor_, (nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* output), NUMERIC_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template void segmentMaxFunctor_, (LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output), NUMERIC_TYPES, INTEGER_TYPES);
// -------------------------------------------------------------------------------------------------------------- //
// -------------------------------------------------------------------------------------------------------------- //
// Unsorted segment ops functors implementation
// -------------------------------------------------------------------------------------------------------------- //
template <typename I>
static __global__ void unsortedSegmentIndexValidateKernel(I* indices, Nd4jLong* indicesShape, I expected, I* found) {
__shared__ bool onlyTrue;
__shared__ Nd4jLong len;
if (threadIdx.x == 0) {
onlyTrue = true;
len = shape::length(indicesShape);
}
__syncthreads();
auto start = threadIdx.x + blockIdx.x * blockDim.x;
auto step = gridDim.x * blockDim.x;
for (int e = start; e < len && onlyTrue; e += step) {
nd4j::math::atomics::nd4j_atomicMax(found, indices[e]);
if (expected < *found)
onlyTrue = false;
}
}
template <typename I>
static bool unsortedSegmentIndicesValidate_(nd4j::LaunchContext* context , NDArray* indices, Nd4jLong expected, Nd4jLong& output) {
output = expected;
I found = output;
I exp = expected;
auto stream = context->getCudaStream();
I* devFound;
cudaMalloc(&devFound, sizeof(I));
cudaMemcpy(devFound, &found, sizeof(I), cudaMemcpyHostToDevice);
unsortedSegmentIndexValidateKernel<I><<<1, indices->lengthOf(), 128, *stream>>>(reinterpret_cast<I*>(indices->specialBuffer()), indices->specialShapeInfo(), exp, devFound);
cudaMemcpy(&found, devFound, sizeof(I), cudaMemcpyDeviceToHost);
cudaFree(devFound);
output = found;
return expected == output;
}
bool unsortedSegmentIndicesValidate(nd4j::LaunchContext* context , NDArray* indices, Nd4jLong expected, Nd4jLong& output) {
BUILD_SINGLE_SELECTOR(indices->dataType(), return unsortedSegmentIndicesValidate_, (context, indices, expected, output), INTEGER_TYPES);
}
BUILD_SINGLE_TEMPLATE(template bool unsortedSegmentIndicesValidate_, (nd4j::LaunchContext* context , NDArray* indices, Nd4jLong expected, Nd4jLong& output), INTEGER_TYPES);
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static void unsortedSegmentMaxFunctor_(nd4j::LaunchContext* context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
auto stream = context->getCudaStream();
// NDArray classes = NDArrayFactory::create<int>('c', {numOfClasses, 2});
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numOfClasses});
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numOfClasses});
// NDArray row = NDArrayFactory::create<int>('c', {1, 2}, {(int)indices->lengthOf(), (int)0});
// classes.applyTrueBroadcast(nd4j::BroadcastOpsTuple::Assign(), &row, &classes);
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(numOfClasses, indices->lengthOf(), numOfClasses * 32 + 32);
// int* classesBuf = reinterpret_cast<int*>(classes.specialBuffer());
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numOfClasses, begins, lengths);
classesRangesBegs.syncToHost();
classesRangesLens.syncToHost();
if (input->isVector()) {
unsortedSegmentMaxLinearKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
dims.x = input->sizeAt(0);
output->assign(-DataTypeUtils::max<T>());
segmentMaxTadKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static void unsortedSegmentMinFunctor_(nd4j::LaunchContext* context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
auto stream = context->getCudaStream();
// NDArray classes = NDArrayFactory::create<int>('c', {numOfClasses, 2});
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numOfClasses});
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numOfClasses});
// NDArray row = NDArrayFactory::create<int>('c', {1, 2}, {(int)indices->lengthOf(), (int)0});
// classes.applyTrueBroadcast(nd4j::BroadcastOpsTuple::Assign(), &row, &classes);
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(numOfClasses, indices->lengthOf(), numOfClasses * 32 + 32);
// int* classesBuf = reinterpret_cast<int*>(classes.specialBuffer());
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numOfClasses, begins, lengths);
if (input->isVector()) {
unsortedSegmentMinLinearKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo());
}
else {
output->assign(DataTypeUtils::max<T>());
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
dims.x = input->sizeAt(0);
segmentMinTadKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static void unsortedSegmentMeanFunctor_(nd4j::LaunchContext* context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
auto stream = context->getCudaStream();
// NDArray classes = NDArrayFactory::create<int>('c', {numOfClasses, 2});
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numOfClasses});
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numOfClasses});
// NDArray row = NDArrayFactory::create<int>('c', {1, 2}, {(int)indices->lengthOf(), (int)0});
// classes.applyTrueBroadcast(nd4j::BroadcastOpsTuple::Assign(), &row, &classes);
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(numOfClasses, indices->lengthOf(), numOfClasses * 32 + 32);
// int* classesBuf = reinterpret_cast<int*>(classes.specialBuffer());
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numOfClasses, begins, lengths);
if (input->isVector()) {
unsortedSegmentMeanLinearKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo());
}
else {
output->assign(0);
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
dims.x = input->sizeAt(0);
segmentMeanTadKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static void unsortedSegmentSumFunctor_(nd4j::LaunchContext* context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
auto stream = context->getCudaStream();
// NDArray classes = NDArrayFactory::create<int>('c', {numOfClasses, 2});
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numOfClasses});
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numOfClasses});
// NDArray row = NDArrayFactory::create<int>('c', {1, 2}, {(int)indices->lengthOf(), (int)0});
// classes.applyTrueBroadcast(nd4j::BroadcastOpsTuple::Assign(), &row, &classes);
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(numOfClasses, indices->lengthOf(), (numOfClasses + 1) * 64);
// int* classesBuf = reinterpret_cast<int*>(classes.specialBuffer());
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numOfClasses, begins, lengths);
if (input->isVector()) {
unsortedSegmentSumLinearKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo());
}
else {
output->assign(0);
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
dims.x = input->sizeAt(0);
segmentSumTadKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static void unsortedSegmentProdFunctor_(nd4j::LaunchContext* context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
auto stream = context->getCudaStream();
// NDArray classes = NDArrayFactory::create<int>('c', {numOfClasses, 2});
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numOfClasses});
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numOfClasses});
// NDArray row = NDArrayFactory::create<int>('c', {1, 2}, {(int)indices->lengthOf(), (int)0});
// classes.applyTrueBroadcast(nd4j::BroadcastOpsTuple::Assign(), &row, &classes);
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(numOfClasses, indices->lengthOf(), numOfClasses * 32 + 32);
// int* classesBuf = reinterpret_cast<int*>(classes.specialBuffer());
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numOfClasses, begins, lengths);
if (input->isVector()) {
unsortedSegmentProdLinearKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo());
}
else {
output->assign(1);
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
dims.x = input->sizeAt(0);
segmentProdTadKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static void unsortedSegmentSqrtNFunctor_(nd4j::LaunchContext* context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
auto stream = context->getCudaStream();
// NDArray classes = NDArrayFactory::create<int>('c', {numOfClasses, 2});
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numOfClasses});
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numOfClasses});
// NDArray row = NDArrayFactory::create<int>('c', {1, 2}, {(int)indices->lengthOf(), (int)0});
// classes.applyTrueBroadcast(nd4j::BroadcastOpsTuple::Assign(), &row, &classes);
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(numOfClasses, indices->lengthOf(), numOfClasses * 32 + 32);
// int* classesBuf = reinterpret_cast<int*>(classes.specialBuffer());
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numOfClasses, begins, lengths);
if (input->isVector()) {
unsortedSegmentSqrtNLinearKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo());
}
else {
output->assign(0);
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
dims.x = input->sizeAt(0);
segmentSqrtNTadKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
}
}
// -------------------------------------------------------------------------------------------------------------- //
// -------------------------------------------------------------------------------------------------------------- //
// unsorted ops functors
// -------------------------------------------------------------------------------------------------------------- //
void unsortedSegmentMaxFunctor(nd4j::LaunchContext* context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), unsortedSegmentMaxFunctor_, (context, input, indices, numOfClasses, output), NUMERIC_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
void unsortedSegmentMinFunctor(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), unsortedSegmentMinFunctor_, (context, input, indices, numOfClasses, output),
NUMERIC_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
void unsortedSegmentMeanFunctor(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), unsortedSegmentMeanFunctor_, (context, input, indices, numOfClasses, output),
FLOAT_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
void unsortedSegmentSumFunctor(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), unsortedSegmentSumFunctor_, (context, input, indices, numOfClasses, output),
NUMERIC_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
void unsortedSegmentProdFunctor(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), unsortedSegmentProdFunctor_, (context, input, indices, numOfClasses, output),
FLOAT_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
void unsortedSegmentSqrtNFunctor(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), unsortedSegmentSqrtNFunctor_, (context, input, indices, numOfClasses, output),
FLOAT_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
BUILD_DOUBLE_TEMPLATE(template void unsortedSegmentMaxFunctor_, (nd4j::LaunchContext* context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template void unsortedSegmentMinFunctor_, (nd4j::LaunchContext* context , NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template void unsortedSegmentMeanFunctor_, (nd4j::LaunchContext* context , NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output), FLOAT_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template void unsortedSegmentSumFunctor_, (nd4j::LaunchContext* context , NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template void unsortedSegmentProdFunctor_, (nd4j::LaunchContext* context , NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output), FLOAT_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template void unsortedSegmentSqrtNFunctor_, (nd4j::LaunchContext* context , NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output), FLOAT_TYPES, INTEGER_TYPES);
// -------------------------------------------------------------------------------------------------------------- //
// -------------------------------------------------------------------------------------------------------------- //
// Backpropagate ops helpers
// -------------------------------------------------------------------------------------------------------------- //
// Sorted backpropagate ops
// -------------------------------------------------------------------------------------------------------------- //
// segment max
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static __global__ void segmentMaxBPLinearKernel(void* inputBuf, Nd4jLong* inputShape, void* forwardOutput,
Nd4jLong* forwardShape, void* eps, Nd4jLong* epsShape, void* indicesBuf, Nd4jLong* indicesShape,
void* outputBuf, Nd4jLong* outputShape) {
__shared__ T* x;
__shared__ T* gradIn;
__shared__ T* gradOut;
__shared__ I* y;
__shared__ T* z;
__shared__ Nd4jLong xLen, gradLen;
if (threadIdx.x == 0) {
xLen = shape::length(inputShape);
x = reinterpret_cast<T*>(inputBuf);
y = reinterpret_cast<I*>(indicesBuf);
z = reinterpret_cast<T*>(outputBuf);
gradIn = reinterpret_cast<T*>(forwardOutput);
gradOut = reinterpret_cast<T*>(eps);
gradLen = shape::length(epsShape);
}
auto start = blockIdx.x * blockDim.x + threadIdx.x;
auto step = gridDim.x * blockDim.x;
for (auto e = start; e < xLen; e += step) {
auto zOffset = shape::getIndexOffset(e, outputShape, xLen);
auto xOffset = shape::getIndexOffset(e, inputShape, xLen);
auto yOffset = shape::getIndexOffset(e, indicesShape, xLen);
auto classIndex = y[yOffset];
auto gradOffsetI = shape::getIndexOffset(classIndex, forwardShape, gradLen);
auto gradOffsetO = shape::getIndexOffset(classIndex, epsShape, gradLen);
if (nd4j::math::nd4j_abs(gradIn[gradOffsetI] - x[xOffset]) <= T(1.e-6)) {
z[zOffset] = gradOut[gradOffsetO];
}
}
}
template <typename T, typename I>
static __global__ void segmentSumBPLinearKernel(void* inputBuf, Nd4jLong* inputShape, void* eps, Nd4jLong* epsShape,
void* indicesBuf, Nd4jLong* indicesShape, void* outputBuf, Nd4jLong* outputShape) {
__shared__ T* x;
__shared__ T* gradIn;
__shared__ T* gradOut;
__shared__ I* y;
__shared__ T* z;
__shared__ Nd4jLong xLen, gradLen;
if (threadIdx.x == 0) {
xLen = shape::length(inputShape);
x = reinterpret_cast<T*>(inputBuf);
y = reinterpret_cast<I*>(indicesBuf);
z = reinterpret_cast<T*>(outputBuf);
gradOut = reinterpret_cast<T*>(eps);
gradLen = shape::length(epsShape);
}
auto start = blockIdx.x * blockDim.x + threadIdx.x;
auto step = gridDim.x * blockDim.x;
for (auto e = start; e < xLen; e += step) {
auto zOffset = shape::getIndexOffset(e, outputShape, xLen);
auto xOffset = shape::getIndexOffset(e, inputShape, xLen);
auto yOffset = shape::getIndexOffset(e, indicesShape, xLen);
auto classIndex = y[yOffset];
auto gradOffsetO = shape::getIndexOffset(classIndex, epsShape, gradLen);
z[zOffset] = gradOut[gradOffsetO];
}
}
template <typename T, typename I>
static __global__ void segmentProdBPLinearKernel(void* inputBuf, Nd4jLong* inputShape, void* forwardOutput,
Nd4jLong* forwardShape, void* eps, Nd4jLong* epsShape, void* indicesBuf, Nd4jLong* indicesShape,
void* outputBuf, Nd4jLong* outputShape) {
__shared__ T* x;
__shared__ T* gradIn;
__shared__ T* gradOut;
__shared__ I* y;
__shared__ T* z;
__shared__ Nd4jLong xLen, gradLen;
if (threadIdx.x == 0) {
xLen = shape::length(inputShape);
x = reinterpret_cast<T*>(inputBuf);
y = reinterpret_cast<I*>(indicesBuf);
z = reinterpret_cast<T*>(outputBuf);
gradIn = reinterpret_cast<T*>(forwardOutput);
gradOut = reinterpret_cast<T*>(eps);
gradLen = shape::length(epsShape);
}
auto start = blockIdx.x * blockDim.x + threadIdx.x;
auto step = gridDim.x * blockDim.x;
for (auto e = start; e < xLen; e += step) {
auto zOffset = shape::getIndexOffset(e, outputShape, xLen);
auto xOffset = shape::getIndexOffset(e, inputShape, xLen);
auto yOffset = shape::getIndexOffset(e, indicesShape, xLen);
auto classIndex = y[yOffset];
auto gradOffsetI = shape::getIndexOffset(classIndex, forwardShape, gradLen);
auto gradOffsetO = shape::getIndexOffset(classIndex, epsShape, gradLen);
z[zOffset] = gradOut[gradOffsetO] * gradIn[gradOffsetI] / x[xOffset];
}
}
template <typename T, typename I>
static __global__ void segmentMeanBPLinearKernel(void* inputBuf, Nd4jLong* inputShape, void* eps, Nd4jLong* epsShape, void* indicesBuf, Nd4jLong* indicesShape,
int* lengths, void* outputBuf, Nd4jLong* outputShape) {
__shared__ T* x;
__shared__ T* gradIn;
__shared__ T* gradOut;
__shared__ I* y;
__shared__ T* z;
__shared__ Nd4jLong xLen, gradLen;
if (threadIdx.x == 0) {
xLen = shape::length(inputShape);
x = reinterpret_cast<T*>(inputBuf);
y = reinterpret_cast<I*>(indicesBuf);
z = reinterpret_cast<T*>(outputBuf);
gradOut = reinterpret_cast<T*>(eps);
gradLen = shape::length(epsShape);
}
auto start = blockIdx.x * blockDim.x + threadIdx.x;
auto step = gridDim.x * blockDim.x;
for (auto e = start; e < xLen; e += step) {
auto zOffset = shape::getIndexOffset(e, outputShape, xLen);
auto xOffset = shape::getIndexOffset(e, inputShape, xLen);
auto yOffset = shape::getIndexOffset(e, indicesShape, xLen);
auto classIndex = y[yOffset];
auto gradOffsetO = shape::getIndexOffset(classIndex, epsShape, gradLen);
z[zOffset] = T(gradOut[gradOffsetO] / float(lengths[classIndex]));
}
}
template <typename T, typename I>
static __global__ void segmentSqrtNBPLinearKernel(void* inputBuf, Nd4jLong* inputShape, void* eps, Nd4jLong* epsShape, void* indicesBuf, Nd4jLong* indicesShape,
int* lengths, void* outputBuf, Nd4jLong* outputShape) {
__shared__ T* x;
__shared__ T* gradIn;
__shared__ T* gradOut;
__shared__ I* y;
__shared__ T* z;
__shared__ Nd4jLong xLen, gradLen;
if (threadIdx.x == 0) {
xLen = shape::length(inputShape);
x = reinterpret_cast<T*>(inputBuf);
y = reinterpret_cast<I*>(indicesBuf);
z = reinterpret_cast<T*>(outputBuf);
gradOut = reinterpret_cast<T*>(eps);
gradLen = shape::length(epsShape);
}
auto start = blockIdx.x * blockDim.x + threadIdx.x;
auto step = gridDim.x * blockDim.x;
for (auto e = start; e < xLen; e += step) {
auto zOffset = shape::getIndexOffset(e, outputShape, xLen);
auto xOffset = shape::getIndexOffset(e, inputShape, xLen);
auto yOffset = shape::getIndexOffset(e, indicesShape, xLen);
auto classIndex = y[yOffset];
auto gradOffsetO = shape::getIndexOffset(classIndex, epsShape, gradLen);
z[zOffset] = T(gradOut[gradOffsetO] / math::nd4j_sqrt<int, float>(lengths[classIndex]));
}
}
template <typename T, typename I>
static __global__ void segmentMaxBPTadKernel(void* inputBuf, Nd4jLong* inputShape, void* forwardOutput,
Nd4jLong* forwardShape, void* eps, Nd4jLong* epsShape, void* indicesBuf, Nd4jLong* indicesShape,
void* outputBuf, Nd4jLong* outputShape,Nd4jLong* inputTad,
Nd4jLong* inputOffsets, Nd4jLong* gradInTad, Nd4jLong* gradInOffsets,
Nd4jLong* gradOutTad, Nd4jLong* gradOutOffsets, Nd4jLong* outTad,
Nd4jLong* outOffsets) {
__shared__ T* x;
__shared__ T* gradIn;
__shared__ T* gradOut;
__shared__ I* y;
__shared__ T* z;
__shared__ Nd4jLong xLen, yLen, gradLen, currentLen;
if (threadIdx.x == 0) {
xLen = shape::length(inputShape);
x = reinterpret_cast<T*>(inputBuf);
y = reinterpret_cast<I*>(indicesBuf);
z = reinterpret_cast<T*>(outputBuf);
yLen = shape::length(indicesShape);
gradOut = reinterpret_cast<T*>(eps);
gradIn = reinterpret_cast<T*>(forwardOutput);
gradLen = shape::length(epsShape);
currentLen = shape::length(outTad);
}
for (auto i = blockIdx.x; i < yLen; i += gridDim.x) {
auto yIndex = shape::getIndexOffset(i, indicesShape, yLen);
auto segment = y[yIndex];
T* current = x + inputOffsets[i];
T* currentOut = z + outOffsets[i];
T* in = gradIn + gradInOffsets[segment];
T* outGrad = gradOut + gradOutOffsets[segment];
for (auto e = threadIdx.x; e < currentLen; e += blockDim.x) {
if (nd4j::math::nd4j_abs(in[e] - current[e]) <= T(1.e-6))
currentOut[e] = outGrad[e];
}
}
}
template <typename T, typename I>
static __global__ void segmentSumBPTadKernel(void* inputBuf, Nd4jLong* inputShape, void* eps, Nd4jLong* epsShape,
void* indicesBuf, Nd4jLong* indicesShape, void* outputBuf, Nd4jLong* outputShape, Nd4jLong* inputTad,
Nd4jLong* inputOffsets, Nd4jLong* gradOutTad, Nd4jLong* gradOutOffsets, Nd4jLong* outTad, Nd4jLong* outOffsets) {
__shared__ T* x;
__shared__ T* gradOut;
__shared__ I* y;
__shared__ T* z;
__shared__ Nd4jLong xLen, yLen, gradLen, currentLen;
if (threadIdx.x == 0) {
xLen = shape::length(inputShape);
x = reinterpret_cast<T*>(inputBuf);
y = reinterpret_cast<I*>(indicesBuf);
z = reinterpret_cast<T*>(outputBuf);
yLen = shape::length(indicesShape);
gradOut = reinterpret_cast<T*>(eps);
gradLen = shape::length(epsShape);
currentLen = shape::length(outTad);
}
for (auto i = blockIdx.x; i < yLen; i += gridDim.x) {
auto yIndex = shape::getIndexOffset(i, indicesShape, yLen);
auto segment = y[yIndex];
T* currentOut = z + outOffsets[i];
T* outGrad = gradOut + gradOutOffsets[segment];
for (auto e = threadIdx.x; e < currentLen; e += blockDim.x) {
currentOut[e] = outGrad[e];
}
}
}
template <typename T, typename I>
static __global__ void segmentMeanBPTadKernel(void* inputBuf, Nd4jLong* inputShape, void* eps, Nd4jLong* epsShape,
void* indicesBuf, Nd4jLong* indicesShape, int* lengths, void* outputBuf, Nd4jLong* outputShape,Nd4jLong* inputTad,
Nd4jLong* inputOffsets, Nd4jLong* gradOutTad, Nd4jLong* gradOutOffsets, Nd4jLong* outTad, Nd4jLong* outOffsets) {
__shared__ T* x;
__shared__ T* gradOut;
__shared__ I* y;
__shared__ T* z;
__shared__ Nd4jLong xLen, yLen, gradLen, currentLen;
if (threadIdx.x == 0) {
xLen = shape::length(inputShape);
x = reinterpret_cast<T*>(inputBuf);
y = reinterpret_cast<I*>(indicesBuf);
z = reinterpret_cast<T*>(outputBuf);
yLen = shape::length(indicesShape);
gradOut = reinterpret_cast<T*>(eps);
gradLen = shape::length(epsShape);
currentLen = shape::length(outTad);
}
__syncthreads();
for (auto i = blockIdx.x; i < yLen; i += gridDim.x) {
// auto yIndex = shape::getIndexOffset(i, indicesShape, yLen);
auto segment = y[i]; //yIndex];
T* currentOut = z + outOffsets[i];
T* outGrad = gradOut + gradOutOffsets[segment];
for (auto e = threadIdx.x; e < currentLen; e += blockDim.x) {
auto zIndex = shape::getIndexOffset(e, outTad, currentLen);
auto gradIndex = shape::getIndexOffset(e, gradOutTad, gradLen);
if (lengths[segment] > 0)
currentOut[zIndex] = T(outGrad[gradIndex] / float(lengths[segment]));
}
}
}
template <typename T, typename I>
static __global__ void segmentSqrtNBPTadKernel(void* inputBuf, Nd4jLong* inputShape, void* eps, Nd4jLong* epsShape,
void* indicesBuf, Nd4jLong* indicesShape, int* lengths, void* outputBuf, Nd4jLong* outputShape,Nd4jLong* inputTad,
Nd4jLong* inputOffsets, Nd4jLong* gradOutTad, Nd4jLong* gradOutOffsets, Nd4jLong* outTad, Nd4jLong* outOffsets) {
__shared__ T* x;
__shared__ T* gradOut;
__shared__ I* y;
__shared__ T* z;
__shared__ Nd4jLong xLen, yLen, gradLen, currentLen;
if (threadIdx.x == 0) {
xLen = shape::length(inputShape);
x = reinterpret_cast<T*>(inputBuf);
y = reinterpret_cast<I*>(indicesBuf);
z = reinterpret_cast<T*>(outputBuf);
yLen = shape::length(indicesShape);
gradOut = reinterpret_cast<T*>(eps);
gradLen = shape::length(epsShape);
currentLen = shape::length(outTad);
}
__syncthreads();
for (auto i = blockIdx.x; i < yLen; i += gridDim.x) {
// auto yIndex = shape::getIndexOffset(i, indicesShape, yLen);
auto segment = y[i]; //yIndex];
T* currentOut = z + outOffsets[i];
T* outGrad = gradOut + gradOutOffsets[segment];
for (auto e = threadIdx.x; e < currentLen; e += blockDim.x) {
auto zIndex = shape::getIndexOffset(e, outTad, currentLen);
auto gradIndex = shape::getIndexOffset(e, gradOutTad, gradLen);
if (lengths[segment] > 0)
currentOut[zIndex] = T(outGrad[gradIndex] / math::nd4j_sqrt<int, float>(lengths[segment]));
}
}
}
template <typename T, typename I>
static __global__ void segmentProdBPTadKernel(void* inputBuf, Nd4jLong* inputShape, void* forwardOutput,
Nd4jLong* forwardShape, void* eps, Nd4jLong* epsShape, void* indicesBuf, Nd4jLong* indicesShape,
void* outputBuf, Nd4jLong* outputShape,Nd4jLong* inputTad,
Nd4jLong* inputOffsets, Nd4jLong* gradInTad, Nd4jLong* gradInOffsets,
Nd4jLong* gradOutTad, Nd4jLong* gradOutOffsets, Nd4jLong* outTad,
Nd4jLong* outOffsets) {
__shared__ T* x;
__shared__ T* gradIn;
__shared__ T* gradOut;
__shared__ I* y;
__shared__ T* z;
__shared__ Nd4jLong xLen, yLen, gradLen, currentLen;
if (threadIdx.x == 0) {
xLen = shape::length(inputShape);
x = reinterpret_cast<T*>(inputBuf);
y = reinterpret_cast<I*>(indicesBuf);
z = reinterpret_cast<T*>(outputBuf);
yLen = shape::length(indicesShape);
gradOut = reinterpret_cast<T*>(eps);
gradIn = reinterpret_cast<T*>(forwardOutput);
gradLen = shape::length(epsShape);
currentLen = shape::length(outTad);
}
for (auto i = blockIdx.x; i < yLen; i += gridDim.x) {
auto yIndex = shape::getIndexOffset(i, indicesShape, yLen);
auto segment = y[yIndex];
T* current = x + inputOffsets[i];
T* currentOut = z + outOffsets[i];
T* in = gradIn + gradInOffsets[segment];
T* outGrad = gradOut + gradOutOffsets[segment];
for (auto e = threadIdx.x; e < currentLen; e += blockDim.x) {
currentOut[e] = outGrad[e] * in[e] / current[e];
}
}
}
template <typename T, typename I>
int segmentMaxFunctorBP_(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
//int numOfClasses = gradOut->sizeAt(0);
// if input is a vector: (as if in doc sample)
auto stream = context->getCudaStream();
NDArray tempRes(gradOut->ordering(), gradOut->getShapeAsVector(), DataTypeUtils::fromT<T>(), context);//->shapeInfo(), context);
segmentMaxFunctor_<T, I>(context, input, indices, &tempRes);
NDArray::prepareSpecialUse({output}, {input, indices, gradOut, &tempRes});
if (input->isVector()) {
Nd4jLong loop_size = input->lengthOf();
auto numOfClasses = gradOut->lengthOf(); //indices->e<Nd4jLong>(loop_size - 1);
segmentMaxBPLinearKernel<T,I><<<1 + gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
auto packGradIn = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(tempRes.getShapeInfo(), dimensions);
auto packGradOut = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradOut->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
Nd4jLong* gradInTads = packGradIn.specialShapeInfo();
Nd4jLong* gradInTadOffsets = packGradIn.specialOffsets();
Nd4jLong* gradOutTads = packGradOut.specialShapeInfo();
Nd4jLong* gradOutTadOffsets = packGradOut.specialOffsets();
segmentMaxBPTadKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(),
inputTads, inputTadOffsets, gradInTads, gradInTadOffsets, gradOutTads, gradOutTadOffsets,
outputTads, outputTadOffsets);
}
NDArray::registerSpecialUse({output}, {input, indices, gradOut, &tempRes});
return Status::OK();
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
int segmentMinFunctorBP_(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
//int numOfClasses = gradOut->sizeAt(0);
// if input is a vector: (as if in doc sample)
auto stream = context->getCudaStream();
NDArray tempRes(gradOut->ordering(), gradOut->getShapeAsVector(), DataTypeUtils::fromT<T>(), context);//->shapeInfo(), context);
segmentMinFunctor_<T, I>(context, input, indices, &tempRes);
NDArray::prepareSpecialUse({output}, {input, indices, gradOut, &tempRes});
if (input->isVector()) {
Nd4jLong loop_size = input->lengthOf();
auto numOfClasses = gradOut->lengthOf(); //indices->e<Nd4jLong>(loop_size - 1);
segmentMaxBPLinearKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
auto packGradIn = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(tempRes.getShapeInfo(), dimensions);
auto packGradOut = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradOut->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
Nd4jLong* gradInTads = packGradIn.specialShapeInfo();
Nd4jLong* gradInTadOffsets = packGradIn.specialOffsets();
Nd4jLong* gradOutTads = packGradOut.specialShapeInfo();
Nd4jLong* gradOutTadOffsets = packGradOut.specialOffsets();
segmentMaxBPTadKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(),
inputTads, inputTadOffsets, gradInTads, gradInTadOffsets, gradOutTads, gradOutTadOffsets,
outputTads, outputTadOffsets);
}
NDArray::registerSpecialUse({output}, {input, indices, gradOut, &tempRes});
return Status::OK();
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
int segmentSumFunctorBP_(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
auto stream = context->getCudaStream();
NDArray::prepareSpecialUse({output}, {input, indices, gradOut});
if (input->isVector()) {
Nd4jLong loop_size = input->lengthOf();
auto numOfClasses = gradOut->lengthOf(); //indices->e<Nd4jLong>(loop_size - 1);
segmentSumBPLinearKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(),
input->specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
auto packGradOut = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradOut->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
Nd4jLong* gradOutTads = packGradOut.specialShapeInfo();
Nd4jLong* gradOutTadOffsets = packGradOut.specialOffsets();
segmentSumBPTadKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(),
inputTads, inputTadOffsets, gradOutTads, gradOutTadOffsets,
outputTads, outputTadOffsets);
}
NDArray::registerSpecialUse({output}, {input, indices, gradOut});
return Status::OK();
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
int segmentMeanFunctorBP_(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
auto stream = context->getCudaStream();
NDArray::prepareSpecialUse({output}, {input, indices, gradOut});
auto numClasses = indices->e<int>(indices->lengthOf() - 1) + 1;
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numClasses});
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numClasses});
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32);
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numClasses, begins, lengths);
if (input->isVector()) {
Nd4jLong loop_size = input->lengthOf();
auto numOfClasses = gradOut->lengthOf(); //indices->e<Nd4jLong>(loop_size - 1);
segmentMeanBPLinearKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(),
input->specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), lengths, output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
// auto packGradIn = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(tempRes.getShapeInfo(), dimensions);
auto packGradOut = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradOut->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
Nd4jLong* gradOutTads = packGradOut.specialShapeInfo();
Nd4jLong* gradOutTadOffsets = packGradOut.specialOffsets();
segmentMeanBPTadKernel<T,I><<<indices->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
gradOut->specialBuffer(), gradOut->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), lengths,
output->specialBuffer(), output->specialShapeInfo(), inputTads, inputTadOffsets, gradOutTads, gradOutTadOffsets,
outputTads, outputTadOffsets);
}
NDArray::registerSpecialUse({output}, {input, indices, gradOut});
return Status::OK();
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
int segmentProdFunctorBP_(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
auto stream = context->getCudaStream();
NDArray tempRes(gradOut->ordering(), gradOut->getShapeAsVector(), DataTypeUtils::fromT<T>(), context);//->shapeInfo(), context);
segmentProdFunctor_<T, I>(context, input, indices, &tempRes);
NDArray::prepareSpecialUse({output}, {input, indices, gradOut});
if (input->isVector()) {
Nd4jLong loopSize = input->lengthOf();
auto numOfClasses = gradOut->lengthOf(); //indices->e<Nd4jLong>(loop_size - 1);
segmentProdBPLinearKernel<T,I><<<gradOut->lengthOf(), loopSize, 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
auto packGradIn = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(tempRes.getShapeInfo(), dimensions);
auto packGradOut = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradOut->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
Nd4jLong* gradInTads = packGradIn.specialShapeInfo();
Nd4jLong* gradInTadOffsets = packGradIn.specialOffsets();
Nd4jLong* gradOutTads = packGradOut.specialShapeInfo();
Nd4jLong* gradOutTadOffsets = packGradOut.specialOffsets();
segmentProdBPTadKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(),
inputTads, inputTadOffsets, gradInTads, gradInTadOffsets, gradOutTads, gradOutTadOffsets,
outputTads, outputTadOffsets);
}
NDArray::registerSpecialUse({output}, {input, indices, gradOut});
return Status::OK();
}
// -------------------------------------------------------------------------------------------------------------- //
int segmentMaxFunctorBP(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return segmentMaxFunctorBP_, (context, input,
indices, gradOut, output), NUMERIC_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
// segmen min
int segmentMinFunctorBP(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return segmentMinFunctorBP_, (context, input,
indices, gradOut, output), NUMERIC_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
// segmen mean
int segmentMeanFunctorBP(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return segmentMeanFunctorBP_, (context, input,
indices, gradOut, output), NUMERIC_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
int segmentSumFunctorBP(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return segmentSumFunctorBP_, (context, input,
indices, gradOut, output), NUMERIC_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
int segmentProdFunctorBP(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return segmentProdFunctorBP_, (context, input,
indices, gradOut, output), FLOAT_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
BUILD_DOUBLE_TEMPLATE(template int segmentMaxFunctorBP_, (nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output), NUMERIC_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template int segmentMinFunctorBP_, (nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output), NUMERIC_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template int segmentSumFunctorBP_, (nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output), NUMERIC_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template int segmentMeanFunctorBP_, (nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output), FLOAT_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template int segmentProdFunctorBP_, (nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output), FLOAT_TYPES, INTEGER_TYPES);
// -------------------------------------------------------------------------------------------------------------- //
// Unsorted backpropagate segment ops
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static int unsortedSegmentMaxFunctorBP_(nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
//int numOfClasses = gradOut->sizeAt(0);
// if input is a vector: (as if in doc sample)
auto stream = context->getCudaStream();
NDArray tempRes(gradOut->ordering(), gradOut->getShapeAsVector(), DataTypeUtils::fromT<T>(), context);//->shapeInfo(), context);
unsortedSegmentMaxFunctor_<T, I>(context, input, indices, numOfClasses, &tempRes);
NDArray::prepareSpecialUse({output}, {input, indices, gradOut, &tempRes});
if (input->isVector()) {
Nd4jLong loop_size = input->lengthOf();
auto numOfClasses = gradOut->lengthOf(); //indices->e<Nd4jLong>(loop_size - 1);
segmentMaxBPLinearKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
auto packGradIn = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(tempRes.getShapeInfo(), dimensions);
auto packGradOut = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradOut->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
Nd4jLong* gradInTads = packGradIn.specialShapeInfo();
Nd4jLong* gradInTadOffsets = packGradIn.specialOffsets();
Nd4jLong* gradOutTads = packGradOut.specialShapeInfo();
Nd4jLong* gradOutTadOffsets = packGradOut.specialOffsets();
segmentMaxBPTadKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(),
inputTads, inputTadOffsets, gradInTads, gradInTadOffsets, gradOutTads, gradOutTadOffsets,
outputTads, outputTadOffsets);
}
NDArray::registerSpecialUse({output}, {input, indices, gradOut, &tempRes});
return Status::OK();
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static int unsortedSegmentMinFunctorBP_(nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
//int numOfClasses = gradOut->sizeAt(0);
// if input is a vector: (as if in doc sample)
auto stream = context->getCudaStream();
NDArray tempRes(gradOut->ordering(), gradOut->getShapeAsVector(), DataTypeUtils::fromT<T>(), context);//->shapeInfo(), context);
unsortedSegmentMinFunctor_<T, I>(context, input, indices, numOfClasses, &tempRes);
NDArray::prepareSpecialUse({output}, {input, indices, gradOut, &tempRes});
if (input->isVector()) {
Nd4jLong loop_size = input->lengthOf();
auto numOfClasses = gradOut->lengthOf(); //indices->e<Nd4jLong>(loop_size - 1);
segmentMaxBPLinearKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
auto packGradIn = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(tempRes.getShapeInfo(), dimensions);
auto packGradOut = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradOut->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
Nd4jLong* gradInTads = packGradIn.specialShapeInfo();
Nd4jLong* gradInTadOffsets = packGradIn.specialOffsets();
Nd4jLong* gradOutTads = packGradOut.specialShapeInfo();
Nd4jLong* gradOutTadOffsets = packGradOut.specialOffsets();
segmentMaxBPTadKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(),
inputTads, inputTadOffsets, gradInTads, gradInTadOffsets, gradOutTads, gradOutTadOffsets,
outputTads, outputTadOffsets);
}
NDArray::registerSpecialUse({output}, {input, indices, gradOut, &tempRes});
return Status::OK();
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static int unsortedSegmentMeanFunctorBP_(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
auto stream = context->getCudaStream();
NDArray::prepareSpecialUse({output}, {input, indices, gradOut});
auto numClasses = indices->e<int>(indices->lengthOf() - 1) + 1;
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numClasses});
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numClasses});
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32);
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numClasses, begins, lengths);
if (input->isVector()) {
Nd4jLong loop_size = input->lengthOf();
auto numOfClasses = gradOut->lengthOf(); //indices->e<Nd4jLong>(loop_size - 1);
segmentMeanBPLinearKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(),
input->specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), lengths, output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
// auto packGradIn = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(tempRes.getShapeInfo(), dimensions);
auto packGradOut = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradOut->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
Nd4jLong* gradOutTads = packGradOut.specialShapeInfo();
Nd4jLong* gradOutTadOffsets = packGradOut.specialOffsets();
segmentMeanBPTadKernel<T,I><<<indices->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
gradOut->specialBuffer(), gradOut->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), lengths,
output->specialBuffer(), output->specialShapeInfo(), inputTads, inputTadOffsets, gradOutTads, gradOutTadOffsets,
outputTads, outputTadOffsets);
}
NDArray::registerSpecialUse({output}, {input, indices, gradOut});
return Status::OK();
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static int unsortedSegmentSumFunctorBP_(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
auto stream = context->getCudaStream();
NDArray::prepareSpecialUse({output}, {input, indices, gradOut});
if (input->isVector()) {
Nd4jLong loop_size = input->lengthOf();
auto numOfClasses = gradOut->lengthOf(); //indices->e<Nd4jLong>(loop_size - 1);
segmentSumBPLinearKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(),
input->specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
auto packGradOut = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradOut->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
Nd4jLong* gradOutTads = packGradOut.specialShapeInfo();
Nd4jLong* gradOutTadOffsets = packGradOut.specialOffsets();
segmentSumBPTadKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(),
inputTads, inputTadOffsets, gradOutTads, gradOutTadOffsets,
outputTads, outputTadOffsets);
}
NDArray::registerSpecialUse({output}, {input, indices, gradOut});
return Status::OK();
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static int unsortedSegmentProdFunctorBP_(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
auto stream = context->getCudaStream();
NDArray tempRes(gradOut->ordering(), gradOut->getShapeAsVector(), DataTypeUtils::fromT<T>(), context);//->shapeInfo(), context);
unsortedSegmentProdFunctor_<T, I>(context, input, indices, numOfClasses, &tempRes);
NDArray::prepareSpecialUse({output}, {input, indices, gradOut});
if (input->isVector()) {
Nd4jLong loopSize = input->lengthOf();
auto numOfClasses = gradOut->lengthOf(); //indices->e<Nd4jLong>(loop_size - 1);
segmentProdBPLinearKernel<T,I><<<gradOut->lengthOf(), loopSize, 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
auto packGradIn = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(tempRes.getShapeInfo(), dimensions);
auto packGradOut = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradOut->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
Nd4jLong* gradInTads = packGradIn.specialShapeInfo();
Nd4jLong* gradInTadOffsets = packGradIn.specialOffsets();
Nd4jLong* gradOutTads = packGradOut.specialShapeInfo();
Nd4jLong* gradOutTadOffsets = packGradOut.specialOffsets();
segmentProdBPTadKernel<T,I><<<indices->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(),
inputTads, inputTadOffsets, gradInTads, gradInTadOffsets, gradOutTads, gradOutTadOffsets,
outputTads, outputTadOffsets);
}
NDArray::registerSpecialUse({output}, {input, indices, gradOut});
return Status::OK();
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static int unsortedSegmentSqrtNFunctorBP_(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
auto stream = context->getCudaStream();
NDArray::prepareSpecialUse({output}, {input, indices, gradOut});
auto numClasses = indices->e<int>(indices->lengthOf() - 1) + 1;
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numClasses});
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numClasses});
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32);
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numClasses, begins, lengths);
if (input->isVector()) {
Nd4jLong loop_size = input->lengthOf();
auto numOfClasses = gradOut->lengthOf(); //indices->e<Nd4jLong>(loop_size - 1);
segmentSqrtNBPLinearKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(),
input->specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), lengths, output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
// auto packGradIn = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(tempRes.getShapeInfo(), dimensions);
auto packGradOut = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradOut->getShapeInfo(), dimensions);
Nd4jLong* inputTads = packX.specialShapeInfo();
Nd4jLong* inputTadOffsets = packX.specialOffsets();
Nd4jLong* outputTads = packZ.specialShapeInfo();
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
Nd4jLong* gradOutTads = packGradOut.specialShapeInfo();
Nd4jLong* gradOutTadOffsets = packGradOut.specialOffsets();
segmentSqrtNBPTadKernel<T,I><<<indices->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
gradOut->specialBuffer(), gradOut->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), lengths,
output->specialBuffer(), output->specialShapeInfo(), inputTads, inputTadOffsets, gradOutTads, gradOutTadOffsets,
outputTads, outputTadOffsets);
}
NDArray::registerSpecialUse({output}, {input, indices, gradOut});
return Status::OK();
}
// ============================================================================================================== //
int unsortedSegmentMaxFunctorBP(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return unsortedSegmentMaxFunctorBP_, (context, input, indices, gradOut, numOfClasses, output), NUMERIC_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
int unsortedSegmentMinFunctorBP(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return unsortedSegmentMinFunctorBP_, (context, input, indices, gradOut, numOfClasses, output), NUMERIC_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
int unsortedSegmentSumFunctorBP(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return unsortedSegmentSumFunctorBP_, (context, input, indices, gradOut, numOfClasses, output), NUMERIC_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
int unsortedSegmentMeanFunctorBP(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return unsortedSegmentMeanFunctorBP_, (context, input, indices, gradOut, numOfClasses, output), FLOAT_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
int unsortedSegmentProdFunctorBP(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return unsortedSegmentProdFunctorBP_, (context, input, indices, gradOut, numOfClasses, output), FLOAT_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
int unsortedSegmentSqrtNFunctorBP(nd4j::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return unsortedSegmentSqrtNFunctorBP_, (context, input, indices, gradOut, numOfClasses, output), FLOAT_TYPES, INTEGER_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
BUILD_DOUBLE_TEMPLATE(template int unsortedSegmentMaxFunctorBP_, (nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template int unsortedSegmentMinFunctorBP_, (nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template int unsortedSegmentSumFunctorBP_, (nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template int unsortedSegmentMeanFunctorBP_, (nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output), FLOAT_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template int unsortedSegmentProdFunctorBP_, (nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output), FLOAT_TYPES, INTEGER_TYPES);
BUILD_DOUBLE_TEMPLATE(template int unsortedSegmentSqrtNFunctorBP_, (nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output), FLOAT_TYPES, INTEGER_TYPES);
// -------------------------------------------------------------------------------------------------------------- //
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
// -------------------------------------------------------------------------------------------------------------- //