cavis/libnd4j/include/ops/declarable/helpers/cuda/scatter_update.cu

132 lines
5.9 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include<ops/declarable/helpers/transforms.h>
#include <array/ResultSet.h>
#include <helpers/ShapeUtils.h>
#include <numeric>
#include <array/NDArrayFactory.h>
#include <helpers/TAD.h>
#include <exceptions/cuda_exception.h>
#include <helpers/PointersManager.h>
#include <helpers/ConstantTadHelper.h>
namespace sd {
namespace ops {
namespace helpers {
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ static void scatterUpdateCuda(const int opCode, const int numOfInd,
void* vx, const Nd4jLong *xShapeInfo, const Nd4jLong *xOffsets,
void* vy, const Nd4jLong *yShapeInfo, const Nd4jLong *yOffsets,
const int* indexes) {
__shared__ T *x, *y;
__shared__ Nd4jLong arrLenX, arrLenY;
for (int e = 0; e < numOfInd; e++ ) {
const auto xIndex = indexes[e];
const bool isOwner = xIndex < gridDim.x ? blockIdx.x == xIndex : blockIdx.x == xIndex % gridDim.x;
if (!isOwner)
continue;
if (threadIdx.x == 0) {
x = reinterpret_cast<T*>(vx) + xOffsets[xIndex];
y = reinterpret_cast<T*>(vy) + yOffsets[e];
arrLenX = shape::length(xShapeInfo);
arrLenY = shape::length(yShapeInfo);
}
__syncthreads();
if (arrLenX != arrLenY)
return;
for (Nd4jLong i = threadIdx.x; i < arrLenX; i += blockDim.x) {
const auto xOffset = shape::getIndexOffset(i, xShapeInfo);
const auto yOffset = shape::getIndexOffset(i, yShapeInfo);
switch (opCode) {
case 0:
x[xOffset] += y[yOffset];
break;
case 1:
x[xOffset] -= y[yOffset];
break;
case 2:
x[xOffset] *= y[yOffset];
break;
case 3:
x[xOffset] /= y[yOffset];
break;
case 4:
x[xOffset] = y[yOffset] - x[xOffset];
break;
case 5:
x[xOffset] = y[yOffset] / x[xOffset];
break;
case 6:
x[xOffset] = y[yOffset];
break;
default:
continue;
}
}
__syncthreads();
}
}
template<typename T>
__host__ static void scatterUpdateCudaLauncher(const cudaStream_t* stream, const int opCode, const int numOfInd, void* vx, const Nd4jLong *xShapeInfo, const Nd4jLong *xOffsets, void* vy, const Nd4jLong *yShapeInfo, const Nd4jLong *yOffsets, const int* indexes) {
scatterUpdateCuda<T><<<512, 256, MAX_NUM_THREADS, *stream>>>(opCode, numOfInd, vx, xShapeInfo, xOffsets, vy, yShapeInfo, yOffsets, indexes);
}
//////////////////////////////////////////////////////////////////////////
void scatterUpdate(sd::LaunchContext* context, NDArray& input, NDArray& updates, const std::vector<int>* intArgs) {
const int opCode = (*intArgs)[0];
const int numOfDims = (*intArgs)[1];
const int numOfInd = (*intArgs)[2 + numOfDims];
std::vector<int> tadDimensions(numOfDims);
for (int e = 2; e < 2 + numOfDims; e++)
tadDimensions[e-2] = (*intArgs)[e];
auto packX = ConstantTadHelper::getInstance()->tadForDimensions(input.shapeInfo(), tadDimensions);
auto packY = ConstantTadHelper::getInstance()->tadForDimensions(updates.shapeInfo(), tadDimensions);
NDArray indices(const_cast<int*>(intArgs->data()) + numOfDims + 3, 'c', {numOfInd}, sd::DataType::INT32, context);
PointersManager manager(context, "scatterUpdate");
NDArray::prepareSpecialUse({&input}, {&input, &updates, &indices});
BUILD_SINGLE_SELECTOR(input.dataType(), scatterUpdateCudaLauncher, (context->getCudaStream(), opCode, numOfInd, input.specialBuffer(), packX.platformShapeInfo(), packX.platformOffsets(), updates.specialBuffer(), packY.platformShapeInfo(), packY.platformOffsets(), reinterpret_cast<int*>(indices.specialBuffer())), LIBND4J_TYPES);
NDArray::registerSpecialUse({&input}, {&input, &updates, &indices});
manager.synchronize();
}
}
}
}