183 lines
8.7 KiB
Plaintext
183 lines
8.7 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 07.03.2019
|
|
//
|
|
|
|
|
|
#include <ops/declarable/helpers/gather.h>
|
|
#include <numeric>
|
|
#include <helpers/PointersManager.h>
|
|
#include <helpers/ShapeUtils.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
template<typename X, typename Y>
|
|
__global__ static void gatherCudaLinearKernel(const void* vx, const Nd4jLong* xShapeInfo, const void* vy, const Nd4jLong* yShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo) {
|
|
|
|
|
|
__shared__ const X* x;
|
|
__shared__ const Y* y;
|
|
__shared__ X* z;
|
|
__shared__ Nd4jLong xLen, yLen, zLen;
|
|
|
|
if (threadIdx.x == 0) {
|
|
x = reinterpret_cast<const X*>(vx);
|
|
z = reinterpret_cast<X*>(vz);
|
|
y = reinterpret_cast<const Y *>(vy);
|
|
xLen = shape::length(xShapeInfo);
|
|
yLen = shape::length(yShapeInfo);
|
|
zLen = shape::length(zShapeInfo);
|
|
}
|
|
__syncthreads();
|
|
//const Nd4jLong zLen = shape::length(zShapeInfo);
|
|
auto start = blockIdx.x * blockDim.x + threadIdx.x;
|
|
auto step = blockDim.x * gridDim.x;
|
|
|
|
for (int j = start; j < zLen; j += step) {
|
|
auto zIndex = shape::getIndexOffset(j, zShapeInfo);
|
|
auto yIndex = shape::getIndexOffset(j, yShapeInfo);
|
|
auto xIndex = shape::getIndexOffset(y[yIndex], xShapeInfo);
|
|
z[zIndex] = x[xIndex];
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
template<typename X, typename Y>
|
|
__global__ static void gatherCuda(const int numOfSubArrs,
|
|
const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xOffsets,
|
|
const void* vy, const Nd4jLong* yShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zOffsets) {
|
|
|
|
const Y* y = reinterpret_cast<const Y*>(vy);
|
|
__shared__ const X* x;
|
|
__shared__ X* z;
|
|
|
|
const Nd4jLong len = shape::length(xShapeInfo);
|
|
//const Nd4jLong zLen = shape::length(zShapeInfo);
|
|
for (int i = blockIdx.x; i < numOfSubArrs; i += gridDim.x) {
|
|
|
|
if (threadIdx.x == 0) {
|
|
x = reinterpret_cast<const X*>(vx) + xOffsets[y[shape::getIndexOffset(i, yShapeInfo)]];
|
|
z = reinterpret_cast<X*>(vz) + zOffsets[i];
|
|
}
|
|
__syncthreads();
|
|
|
|
for (int j = threadIdx.x; j < len; j += blockDim.x) {
|
|
auto zIndex = shape::getIndexOffset(j, zShapeInfo);
|
|
auto xIndex = shape::getIndexOffset(j, xShapeInfo);
|
|
z[zIndex] = x[xIndex];
|
|
}
|
|
__syncthreads();
|
|
}
|
|
}
|
|
|
|
template<typename X, typename Y>
|
|
__host__ static void gatherCudaLinear(const cudaStream_t *stream, const void* vx, const Nd4jLong* xShapeInfo, const void* vy, const Nd4jLong* yShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo) {
|
|
gatherCudaLinearKernel<X,Y><<<128, 256, 1024, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
template<typename X, typename Y>
|
|
__host__ static void gatherCudaLauncher(const cudaStream_t *stream, const int numOfSubArrs,
|
|
const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xOffsets,
|
|
const void* vy, const Nd4jLong* yShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zOffsets) {
|
|
gatherCuda<X,Y><<<numOfSubArrs, MAX_NUM_THREADS, 1024, *stream>>>(numOfSubArrs, vx, xShapeInfo, xOffsets, vy, yShapeInfo, vz, zShapeInfo, zOffsets);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
void gather(sd::LaunchContext * context, const NDArray* input, const NDArray* indices, NDArray* output, const std::vector<int>& intArgs) {
|
|
|
|
const int inputRank = input->rankOf();
|
|
const int numOfIntArgs = intArgs.size();
|
|
|
|
int axis = numOfIntArgs > 0 ? intArgs[0] : 0;
|
|
if(axis < 0)
|
|
axis += inputRank;
|
|
|
|
if (indices == nullptr && numOfIntArgs == 2) { // scalar case
|
|
output->assign((*input)(intArgs[1], {axis}));
|
|
}
|
|
else if (indices != nullptr && indices->isScalar()) {
|
|
|
|
if(input->rankOf() <= 1) { //For scalar indices, rank 0 or 1 input: can't do tensor along dimension 0 as this is whole array... instead, we want to get a scalar
|
|
auto idx = indices->e<Nd4jLong>(0);
|
|
auto scalarNDArray = input->e(idx);
|
|
output->assign(scalarNDArray);
|
|
}
|
|
else {
|
|
NDArray inSubArr = (*input)(indices->e<Nd4jLong>(0), {axis});
|
|
output->assign(inSubArr);
|
|
}
|
|
}
|
|
else {
|
|
|
|
NDArray* pIndices = const_cast<NDArray*>(indices);
|
|
if(indices == nullptr)
|
|
pIndices = new NDArray(input->ordering(), {numOfIntArgs-1}, std::vector<double>(intArgs.begin() + 1, intArgs.end()), DataType::INT64, input->getContext());
|
|
|
|
std::vector<int> dimsOut(pIndices->rankOf());
|
|
std::iota(dimsOut.begin(), dimsOut.end(), axis); // fill with axis, axis+1, ... axis+pIndices->rankOf()-1
|
|
|
|
const Nd4jLong numOfSubArrs = pIndices->lengthOf();
|
|
|
|
Nd4jLong *outSubArrShapeInfo(nullptr), *inSubArrShapeInfo(nullptr), *outSubArrOffsets(nullptr), *inSubArrOffsets(nullptr);
|
|
input-> getSubArrShapeAndOffsets({axis}, inSubArrShapeInfo, inSubArrOffsets);
|
|
output->getSubArrShapeAndOffsets(dimsOut, outSubArrShapeInfo, outSubArrOffsets);
|
|
if (output->rankOf() > 1) {
|
|
PointersManager manager(context, "gather");
|
|
auto xShapeInfo = reinterpret_cast<Nd4jLong *>(manager.replicatePointer(inSubArrShapeInfo,
|
|
shape::shapeInfoByteLength(
|
|
inSubArrShapeInfo)));
|
|
auto zShapeInfo = reinterpret_cast<Nd4jLong *>(manager.replicatePointer(outSubArrShapeInfo,
|
|
shape::shapeInfoByteLength(
|
|
outSubArrShapeInfo)));
|
|
auto xOffsets = reinterpret_cast<Nd4jLong *>(manager.replicatePointer(inSubArrOffsets, (input->lengthOf() /
|
|
shape::length(
|
|
inSubArrShapeInfo)) *
|
|
sizeof(Nd4jLong)));
|
|
auto zOffsets = reinterpret_cast<Nd4jLong *>(manager.replicatePointer(outSubArrOffsets,
|
|
(output->lengthOf() /
|
|
shape::length(outSubArrShapeInfo)) *
|
|
sizeof(Nd4jLong)));
|
|
|
|
NDArray::prepareSpecialUse({output}, {input, pIndices});
|
|
BUILD_DOUBLE_SELECTOR(input->dataType(), pIndices->dataType(), gatherCudaLauncher, (context->getCudaStream(), numOfSubArrs, input->specialBuffer(), xShapeInfo, xOffsets, pIndices->specialBuffer(), pIndices->specialShapeInfo(), output->specialBuffer(), zShapeInfo, zOffsets), LIBND4J_TYPES, INDEXING_TYPES);
|
|
NDArray::registerSpecialUse({output}, {input, pIndices});
|
|
manager.synchronize();
|
|
}
|
|
else {
|
|
NDArray::prepareSpecialUse({output}, {input, pIndices});
|
|
BUILD_DOUBLE_SELECTOR(input->dataType(), pIndices->dataType(), gatherCudaLinear, (context->getCudaStream(), input->specialBuffer(), input->specialShapeInfo(), pIndices->specialBuffer(), pIndices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo()), LIBND4J_TYPES, INDEXING_TYPES);
|
|
NDArray::registerSpecialUse({output}, {input, pIndices});
|
|
|
|
}
|
|
|
|
if(indices == nullptr)
|
|
delete pIndices;
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
} |