raver119 3c4e959e21 [WIP] More of CUDA (#95)
* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* Implementation of hashcode cuda helper. Working edition.

* Fixed parallel test input arangements.

* Fixed tests for hashcode op.

* Fixed shape calculation for image:crop_and_resize op and test.

* NativeOps tests. Initial test suite.

* Added tests for indexReduce methods.

* Added test on execBroadcast with NDArray as dimensions.

* Added test on execBroadcastBool with NDArray as dimensions.

* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.

* Added tests for execReduce with scalar results.

* Added reduce tests for non-empty dims array.

* Added tests for reduce3.

* Added tests for execScalar.

* Added tests for execSummaryStats.

* - provide cpu/cuda code for batch_to_space
- testing it

Signed-off-by: Yurii <yurii@skymind.io>

* - remove old test for batch_to_space (had wrong format and numbers were not checked)

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed complilation errors with test.

* Added test for execTransformFloat.

* Added test for execTransformSame.

* Added test for execTransformBool.

* Added test for execTransformStrict.

* Added tests for execScalar/execScalarBool with TADs.

* Added test for flatten.

* - provide cpu/cuda code for space_to_Batch operaion

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for concat.

* comment unnecessary stuff in s_t_b

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for specialConcat.

* Added tests for memcpy/set routines.

* Fixed pullRow cuda test.

* Added pullRow test.

* Added average test.

* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)

Signed-off-by: Yurii <yurii@skymind.io>

* - debugging and fixing cuda tests in JavaInteropTests file

Signed-off-by: Yurii <yurii@skymind.io>

* - correct some tests

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for shuffle.

* Fixed ops declarations.

* Restored omp and added shuffle test.

* Added convertTypes test.

* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.

* Added sort tests.

* Added tests for execCustomOp.

* - further debuging and fixing tests terminated with crash

Signed-off-by: Yurii <yurii@skymind.io>

* Added tests for calculateOutputShapes.

* Addded Benchmarks test.

* Commented benchmark tests.

* change assertion

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for apply_sgd op. Added cpu helper for that op.

* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.

* Added test for assign broadcastable.

* Added tests for assign_bp op.

* Added tests for axpy op.

* - assign/execScalar/execTransformAny signature change
- minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed axpy op.

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* - fix tests for nativeOps::concat

Signed-off-by: Yurii <yurii@skymind.io>

* sequential transform/scalar

Signed-off-by: raver119 <raver119@gmail.com>

* allow nested parallelism

Signed-off-by: raver119 <raver119@gmail.com>

* assign_bp leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* block setRNG fix

Signed-off-by: raver119 <raver119@gmail.com>

* enable parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* enable nested parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* Added cuda implementation for row_count helper.

* Added implementation for tnse gains op helper.

* - take into account possible situations when input arrays are empty in reduce_ cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.

* Added kernel for tsne/symmetrized op heleper.

* Implementation of tsne/symmetrized op cuda helper. Working edition.

* Eliminated waste printfs.

* Added test for broadcastgradientargs op.

* host-only fallback for empty reduce float

Signed-off-by: raver119 <raver119@gmail.com>

* - some tests fixes

Signed-off-by: Yurii <yurii@skymind.io>

* - correct the rest of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* - further correction of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for Cbow op. Also added cuda implementation for cbow helpers.

* - improve code of stack operation for scalar case

Signed-off-by: Yurii <yurii@skymind.io>

* - provide cuda kernel for gatherND operation

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of cbow helpers with cuda kernels.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* - further correction of cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implementatation of cbow op helper with cuda kernels. Working edition.

* Skip random testing for cudablas case.

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for ELU and ELU_BP ops.

* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.

* Added tests for neq_scalar.

* Added test for noop.

* - further work on clipbynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - get rid of concat op call, use instead direct concat helper call

Signed-off-by: Yurii <yurii@skymind.io>

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for lrelu and lrelu_bp.

* Added tests for selu and selu_bp.

* Fixed lrelu derivative helpers.

* - some corrections in lstm

Signed-off-by: Yurii <yurii@skymind.io>

* operator * result shape fix

Signed-off-by: raver119 <raver119@gmail.com>

* - correct typo in lstmCell

Signed-off-by: Yurii <yurii@skymind.io>

* few tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA inverse broadcast bool fix

Signed-off-by: raver119 <raver119@gmail.com>

* disable MMAP test for CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* BooleanOp syncToDevice

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* additional data types for im2col/col2im

Signed-off-by: raver119 <raver119@gmail.com>

* Added test for firas_sparse op.

* one more RandomBuffer test excluded

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for flatten op.

* Added test for Floor op.

* bunch of tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* mmulDot tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Implemented floordiv_bp op and tests.

* Fixed scalar case with cuda implementation for bds.

* - work on cuda kernel for clip_by_norm backprop op is completed

Signed-off-by: Yurii <yurii@skymind.io>

* Eliminate cbow crach.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminated abortion with batched nlp test.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed shared flag initializing.

* disabled bunch of cpu workspaces tests

Signed-off-by: raver119 <raver119@gmail.com>

* scalar operators fix: missing registerSpecialUse call

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed logdet for cuda and tests.

* - correct clipBynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed crop_and_resize shape datatype.

* - correct some mmul tests

Signed-off-by: Yurii <yurii@skymind.io>
2019-08-05 11:27:05 +10:00

400 lines
18 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author GS <sgazeos@gmail.com>
//
#include <ops/declarable/helpers/legacy_helpers.h>
#include <NDArrayFactory.h>
namespace nd4j {
namespace ops {
namespace helpers {
template <typename T>
static void reluDerivative__(NDArray* theFirst, NDArray* theSecond) {
auto functor = LAMBDA_TT(x, y){
return x > (T) 0.f ? y : T(0.f);
};
theFirst->applyPairwiseLambda<T>(theSecond, functor, nullptr);
}
BUILD_SINGLE_TEMPLATE(template void reluDerivative__, (NDArray* input, NDArray* epsilon), FLOAT_TYPES);
void reluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), reluDerivative__, (theFirst, theSecond), FLOAT_TYPES);
}
template <typename T>
static void reluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return x > (T)0.f ? y : T(0.f);
};
input->applyPairwiseLambda<T>(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void reluDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void reluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), reluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
static void relu6Derivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return x > (T)0.f && x < (T)6.f? y : T(0.f);
};
input->applyPairwiseLambda<T>(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void relu6Derivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void relu6Derivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), relu6Derivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
static void leakyReluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return x >= (T)0.f? y : T(0.f);
};
input->applyPairwiseLambda<T>(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void leakyReluDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void leakyReluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), leakyReluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
static void eluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return y * nd4j::math::nd4j_eluderivative<T,T>(x);
};
input->applyPairwiseLambda<T>(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void eluDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void eluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), eluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
static void seluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return y * simdOps::SELUDerivative<T>::op(x, nullptr);
};
input->applyPairwiseLambda<T>(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void seluDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void seluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), seluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
static void cubeDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return y * (3 * x * x);
};
input->applyPairwiseLambda<T>(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void cubeDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void cubeDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), cubeDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
//return (x >= X(0.f) ? y: -y);
template <typename T>
static void reduceNorm1_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return x > T(0.f)? y : -y;
};
input->applyPairwiseLambda<T>(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void reduceNorm1_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void reduceNorm1(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), reduceNorm1_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
////////////////////////////////////////////////////////////////////////
template <typename T>
static void sigmCrossEntropy_(NDArray* logits, NDArray* labels, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return nd4j::math::nd4j_max<T>(x, (T)0.f) - x * y + nd4j::math::nd4j_log<T,T>((T)1.f + nd4j::math::nd4j_exp<T,T>(-nd4j::math::nd4j_abs(x)));
};
logits->applyPairwiseLambda<T>(labels, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void sigmCrossEntropy_, (NDArray* logits, NDArray* labels, NDArray* output);, FLOAT_TYPES);
void sigmCrossEntropy(nd4j::LaunchContext * context, NDArray* logits, NDArray* labels, NDArray* output) {
BUILD_SINGLE_SELECTOR(logits->dataType(), sigmCrossEntropy_, (logits, labels, output), FLOAT_TYPES);
}
////////////////////////////////////////////////////////////////////////
template <typename T>
static void sigmCrossEntropyGrad_(NDArray* logits, NDArray* labels, NDArray* output) {
// 1 - labels - 1 / (1 + exp(logits))
auto functor = LAMBDA_TT(x, y) {
if(x <= 0)
return static_cast<T>(1.) - y - static_cast<T>(1.) / (static_cast<T>(1.) + nd4j::math::nd4j_exp<T,T>(x));
auto e = nd4j::math::nd4j_exp<T,T>(-x);
return static_cast<T>(1.) - y - e / (static_cast<T>(1.) + e);
};
logits->applyPairwiseLambda<T>(labels, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void sigmCrossEntropyGrad_, (NDArray* logits, NDArray* labels, NDArray*output);, FLOAT_TYPES);
void sigmCrossEntropyGrad(nd4j::LaunchContext * context, NDArray* logits, NDArray* labels, NDArray* output) {
BUILD_SINGLE_SELECTOR(logits->dataType(), sigmCrossEntropyGrad_, (logits, labels, output), FLOAT_TYPES);
}
////////////////////////////////////////////////////////////////////////
template <typename T>
static void tanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
T th = nd4j::math::nd4j_tanh<T,T>(x);
return y * ((T)1.0f - (th * th));
};
input->applyPairwiseLambda<T>(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void tanhDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void tanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), tanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
// return static_cast<X>(d2) * simdOps::HardTanhDerivative<X>::op(d1, nullptr);
template <typename T>
static void hardTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
T th = nd4j::math::nd4j_tanh<T,T>(x);
return y * simdOps::HardTanhDerivative<T>::op(x, nullptr);
};
input->applyPairwiseLambda<T>(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void hardTanhDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void hardTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), hardTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
static void rationalTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return y * simdOps::RationalTanhDerivative<T>::op(x, nullptr);
};
input->applyPairwiseLambda<T>(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void rationalTanhDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void rationalTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), rationalTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
static void rectifiedTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return x > (T) 0.0f ? y * (nd4j::math::nd4j_tanhderivative<T,T>(x)) : (T) 0.0f;
};
input->applyPairwiseLambda<T>(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void rectifiedTanhDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void rectifiedTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), rectifiedTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
// X f = (X) 1.0f + nd4j::math::nd4j_abs<X>(d1);
// return (X) d2 * ((X) 1.0f / (f * f));
template <typename T>
static void softSignDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
T ss = (T)1.f + nd4j::math::nd4j_abs<T>(x);
return y * ((T) 1.0f / (ss * ss));
};
input->applyPairwiseLambda<T>(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void softSignDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void softSignDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), softSignDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
static void softPlusDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
T p = nd4j::math::nd4j_pow<T, T, T>(static_cast<T>(M_E), x);
return y * (p / (p + 1.));
};
input->applyPairwiseLambda<T>(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void softPlusDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void softPlusDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), softPlusDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
///
/// \param theFirst
/// \param theSecond
/// \param theOutput
template <typename T>
static void sigmoidDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
T s = nd4j::math::nd4j_sigmoid<T,T>(x);
return y * (s * ((T) 1.0f - s));
};
input->applyPairwiseLambda<T>(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void sigmoidDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void sigmoidDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), sigmoidDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
static void hardSigmoidDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return y * simdOps::HardSigmoidDerivative<T>::op(x, nullptr);
};
input->applyPairwiseLambda<T>(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void hardSigmoidDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void hardSigmoidDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), hardSigmoidDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
static void logSumExp_(NDArray* input, NDArray* axis, NDArray* output) {
// reduce along axis with
std::unique_ptr<NDArray> tempInput(input->dup());
input->applyTransform(transform::Exp, tempInput.get());
std::vector<int> axisVector;
if (axis != nullptr) {
axisVector.resize(axis->lengthOf());
for (size_t i = 0; i < axisVector.size(); ++i)
axisVector[i] = axis->e<int>(i);
}
tempInput->reduceAlongDimension(reduce::Sum, output, axisVector);
output->applyTransform(transform::Log, nullptr, nullptr);
}
template <typename T>
static void logSumExp_(NDArray* input, NDArray* subtrah, NDArray* axis, NDArray* output) {
// reduce along axis with
std::unique_ptr<NDArray> tempInput(input->dup());
input->applyPairwiseTransform(pairwise::Subtract, subtrah, tempInput.get(), nullptr);
tempInput->applyTransform(transform::Exp, nullptr, nullptr);
std::vector<int> axisVector;
if (axis != nullptr) {
axisVector.resize(axis->lengthOf());
for (size_t i = 0; i < axisVector.size(); ++i)
axisVector[i] = axis->e<int>(i);
}
tempInput->reduceAlongDimension(reduce::Sum, output, axisVector);
output->applyTransform(transform::Log, nullptr, nullptr);
}
void logSumExp(nd4j::LaunchContext * context, NDArray* input, NDArray* axis, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), logSumExp_, (input, axis, output), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void logSumExp_, (NDArray* input, NDArray* axis, NDArray*output);, FLOAT_TYPES);
void logSumExp(nd4j::LaunchContext * context, NDArray* input, NDArray* subtrah, NDArray* axis, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), logSumExp_, (input, subtrah, axis, output), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void logSumExp_, (NDArray* input, NDArray* subtrah, NDArray* axis, NDArray*output);, FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void weightedCrossEntropyWithLogitsFunctor_(NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output) {
T posWeight = weights->e<T>(0);
auto mainRoutineT1 = LAMBDA_TT(_x, _z, posWeight) {
T targetWeight = (1. + (posWeight - (T)1.f) * _z);
return (1. - _z) * _x +
targetWeight * (nd4j::math::nd4j_log<T,T>((T)1.f + nd4j::math::nd4j_exp<T,T>(-nd4j::math::nd4j_abs(_x))) +
nd4j::math::nd4j_max(-_x, T(0.f))
);
};
auto mainRoutineT2 = LAMBDA_TTT(_x, _z, _w) {
return (((T)1.0 - _z) * _x) +
_w * (nd4j::math::nd4j_log<T,T>(T(1.) + nd4j::math::nd4j_exp<T,T>(-nd4j::math::nd4j_abs(_x))) +
nd4j::math::nd4j_max(-_x, T(0.f)));
};
if (weights->isScalar()) {
const_cast<NDArray*>(input)->applyPairwiseLambda<T>(const_cast<NDArray*>(targets), mainRoutineT1, output);
}
else
{
std::unique_ptr<NDArray> targetVector(new NDArray(*weights));
targetVector->applyScalar(scalar::Add, -1.f);
std::unique_ptr<NDArray> targetTensor(new NDArray(*targets));
*targetTensor = (*targetVector * *targetTensor) + T(1.f);
const_cast<NDArray*>(input)->applyTriplewiseLambda<T>(const_cast<NDArray*>(targets), targetTensor.get(), mainRoutineT2, output);
}
}
void weightedCrossEntropyWithLogitsFunctor(nd4j::LaunchContext * context, NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output) {
BUILD_SINGLE_SELECTOR(targets->dataType(), weightedCrossEntropyWithLogitsFunctor_, (targets, input, weights, output), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void weightedCrossEntropyWithLogitsFunctor_, (NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output), FLOAT_TYPES);
}
}
}