149 lines
5.5 KiB
Plaintext
149 lines
5.5 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
|
|
#include<ops/declarable/helpers/meshgrid.h>
|
|
#include <helpers/PointersManager.h>
|
|
#include <helpers/ConstantTadHelper.h>
|
|
#include <array/ResultSet.h>
|
|
#include <numeric>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
template <typename T>
|
|
static _CUDA_D void assign_(void *vx, Nd4jLong *xShapeInfo, void *vz, Nd4jLong *zShapeInfo) {
|
|
auto x = reinterpret_cast<T*>(vx);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
|
|
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
auto xEws = shape::elementWiseStride(xShapeInfo);
|
|
auto zEws = shape::elementWiseStride(zShapeInfo);
|
|
|
|
auto xOrder = shape::order(xShapeInfo);
|
|
auto zOrder = shape::order(zShapeInfo);
|
|
|
|
__shared__ Nd4jLong length;
|
|
|
|
if (threadIdx.x == 0) {
|
|
length = shape::length(xShapeInfo);
|
|
}
|
|
__syncthreads();
|
|
|
|
if (xEws > 0 && zEws > 0 && xOrder == zOrder) {
|
|
for (int i = threadIdx.x; i < length; i += blockDim.x) {
|
|
z[i * zEws] = x[i * xEws];
|
|
}
|
|
} else {
|
|
for (int i = threadIdx.x; i < length; i += blockDim.x) {
|
|
auto xOffset = shape::getIndexOffset(i, xShapeInfo, length);
|
|
auto zOffset = shape::getIndexOffset(i, zShapeInfo, length);
|
|
|
|
z[zOffset] = x[xOffset];
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
template <typename T>
|
|
static _CUDA_G void meshgridKernel(int rank, void **outBuffers, Nd4jLong **tadShapes, Nd4jLong **tadOffsets, Nd4jLong *numTads, void **inBuffers, Nd4jLong **inShapes) {
|
|
// for all arrays
|
|
for (int i = blockIdx.x; i < rank; i += gridDim.x) {
|
|
|
|
// for all tads in this array
|
|
for(Nd4jLong j = 0; j < numTads[i]; j++) {
|
|
assign_<T>(inBuffers[i], inShapes[i], reinterpret_cast<T*>(outBuffers[i]) + tadOffsets[i][j], tadShapes[i]);
|
|
}
|
|
__syncthreads();
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static void meshgrid_(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, const std::vector<NDArray*>& outArrs, const bool swapFirst2Dims) {
|
|
const int rank = inArrs.size();
|
|
int inIndices[MAX_RANK];
|
|
std::iota(inIndices, inIndices + rank, 0);
|
|
if(swapFirst2Dims && rank > 1) {
|
|
inIndices[0] = 1;
|
|
inIndices[1] = 0;
|
|
}
|
|
|
|
PointersManager pm(context, "meshgrid");
|
|
std::vector<void *> hInBuffers(rank);
|
|
std::vector<void *> hOutBuffers(rank);
|
|
std::vector<Nd4jLong *> hInShapes(rank);
|
|
|
|
std::vector<Nd4jLong *> hOutTadShapes(rank);
|
|
std::vector<Nd4jLong *> hOutTadOffsets(rank);
|
|
|
|
std::vector<Nd4jLong> hNumTads(rank);
|
|
|
|
for(int i = 0; i < rank; ++i) {
|
|
hInBuffers[i] = inArrs[i]->specialBuffer();
|
|
hInShapes[i] = inArrs[i]->specialShapeInfo();
|
|
|
|
hOutBuffers[i] = outArrs[i]->specialBuffer();
|
|
|
|
|
|
auto pack = ConstantTadHelper::getInstance()->tadForDimensions(outArrs[i]->shapeInfo(), {inIndices[i]});
|
|
hOutTadShapes[i] = pack.specialShapeInfo();
|
|
hOutTadOffsets[i] = pack.specialOffsets();
|
|
hNumTads[i] = pack.numberOfTads();
|
|
|
|
|
|
//auto list = outArrs[i]->allTensorsAlongDimension({inIndices[i]});
|
|
//for(int j = 0; j < list->size(); ++j)
|
|
// list->at(j)->assign(inArrs[i]);
|
|
|
|
//delete list;
|
|
}
|
|
|
|
auto dInBuffers = reinterpret_cast<void **>(pm.replicatePointer(hInBuffers.data(), hInBuffers.size() * sizeof(void *)));
|
|
auto dOutBuffers = reinterpret_cast<void **>(pm.replicatePointer(hOutBuffers.data(), hOutBuffers.size() * sizeof(void *)));
|
|
|
|
|
|
auto dInShapes = reinterpret_cast<Nd4jLong **>(pm.replicatePointer(hInShapes.data(), hInShapes.size() * sizeof(Nd4jLong *)));
|
|
auto dOutTadShapes = reinterpret_cast<Nd4jLong **>(pm.replicatePointer(hOutTadShapes.data(), hOutTadShapes.size() * sizeof(Nd4jLong *)));
|
|
auto dOutTadOffsets = reinterpret_cast<Nd4jLong **>(pm.replicatePointer(hOutTadOffsets.data(), hOutTadOffsets.size() * sizeof(Nd4jLong *)));
|
|
|
|
auto dNumTads = reinterpret_cast<Nd4jLong *>(pm.replicatePointer(hNumTads.data(), hNumTads.size() * sizeof(Nd4jLong)));
|
|
|
|
|
|
meshgridKernel<T><<<256, 256, 1024, *context->getCudaStream()>>>(rank, dOutBuffers, dOutTadShapes, dOutTadOffsets, dNumTads, dInBuffers, dInShapes);
|
|
|
|
pm.synchronize();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void meshgrid(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, const std::vector<NDArray*>& outArrs, const bool swapFirst2Dims) {
|
|
|
|
BUILD_SINGLE_SELECTOR(inArrs.at(0)->dataType(), meshgrid_, (context, inArrs, outArrs, swapFirst2Dims), LIBND4J_TYPES);
|
|
|
|
for (auto v:outArrs)
|
|
v->tickWriteDevice();
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|