77 lines
3.7 KiB
Plaintext
77 lines
3.7 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// Created by Yurii Shyrma on 07.12.2017.
|
|
//
|
|
|
|
#include "ResultSet.h"
|
|
#include <ops/declarable/helpers/matrixSetDiag.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
|
|
template <typename T>
|
|
static __global__ void matrixSetDiagKernel(void* outputBuffer, Nd4jLong* outputShape, void const* diagonalBuffer, Nd4jLong* diagonalShape, Nd4jLong lastDimSize, Nd4jLong last2DimSize, Nd4jLong lastSmallDim, Nd4jLong batchSize) {
|
|
__shared__ T* z;
|
|
__shared__ T const* x;
|
|
__shared__ Nd4jLong outLength, diagonalLen;
|
|
if (threadIdx.x == 0) {
|
|
z = reinterpret_cast<T*>(outputBuffer);
|
|
x = reinterpret_cast<T const*>(diagonalBuffer);
|
|
outLength = shape::length(outputShape);
|
|
diagonalLen = shape::length(diagonalShape);
|
|
}
|
|
|
|
for(int i = blockIdx.x; i < batchSize; i+= gridDim.x )
|
|
for(int j = threadIdx.x; j < lastSmallDim; j += blockDim.x) {
|
|
// z[i * last2DimSize + j * (lastDimSize + 1)] = x[i * lastSmallDim + j];
|
|
z[shape::getIndexOffset(i * last2DimSize + j * (lastDimSize + 1), outputShape, outLength)] = x[shape::getIndexOffset(i * lastSmallDim + j, diagonalShape, diagonalLen)];
|
|
}
|
|
}
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// Returns a batched matrix tensor with new batched diagonal values.
|
|
// for detailed explanations please take a look on web page: https://www.tensorflow.org/api_docs/python/tf/matrix_set_diag
|
|
template <typename T>
|
|
static void _matrixSetDiag(nd4j::LaunchContext * context, const NDArray* input, const NDArray* diagonal, NDArray* output) {
|
|
*output = *input;
|
|
|
|
const int lastDimSize = input->sizeAt(-1);
|
|
const int last2DimSize = input->sizeAt(-1) * input->sizeAt(-2);
|
|
const int lastSmallDim = diagonal->sizeAt(-1);
|
|
const int batchSize = input->lengthOf()/last2DimSize;
|
|
auto stream = context->getCudaStream();
|
|
dim3 launchDims(256, 512, 8192);
|
|
matrixSetDiagKernel<T><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(output->specialBuffer(), output->specialShapeInfo(), diagonal->getSpecialBuffer(), diagonal->getSpecialShapeInfo(), lastDimSize, last2DimSize, lastSmallDim, batchSize);
|
|
//// #pragma omp parallel for if(batchSize > Environment::getInstance()->elementwiseThreshold()) schedule(static)
|
|
// for(int i = 0; i < batchSize; ++i )
|
|
// for(int j = 0; j < lastSmallDim; ++j) {
|
|
// output->p(i*last2DimSize + j*(lastDimSize + 1), diagonal->e<T>(i*lastSmallDim + j));
|
|
// }
|
|
|
|
}
|
|
|
|
void matrixSetDiag(nd4j::LaunchContext * context, const NDArray* input, const NDArray* diagonal, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), _matrixSetDiag, (context, input, diagonal, output), LIBND4J_TYPES);
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void _matrixSetDiag, (nd4j::LaunchContext * context, const NDArray* input, const NDArray* diagonal, NDArray* output), LIBND4J_TYPES);
|
|
|
|
}
|
|
}
|
|
} |