cavis/libnd4j/include/ops/declarable/helpers/cuda/ismax.cu

115 lines
5.0 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma, created on 21.09.2018
// @author raver119@gmail.com
//
#include <helpers/TAD.h>
#include<ops/declarable/helpers/ismax.h>
#include<loops/special_kernels.h>
#include <helpers/DebugHelper.h>
#include <cuda_exception.h>
#include <PointersManager.h>
#include <helpers/ConstantTadHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
template <typename T>
static void ismax_(nd4j::LaunchContext * context, const NDArray* input, NDArray* output, const std::vector<int>& dimensions) {
void* extraParams = nullptr;
bool scalarCheat = false;
if (extraParams == nullptr) {
scalarCheat = true;
}
auto stream = context->getCudaStream();
auto xRank = input->rankOf();
auto zRank = output->rankOf();
auto xType = input->dataType();
auto zType = output->dataType();
input->syncToDevice();
Nd4jLong* special = nullptr;
PointersManager manager(context, "IsMaxHelper");
if (dimensions.size() == 0) {
// auto scalarShape = ShapeBuilders::createScalarShapeInfo(nd4j::DataType::INT64);
/**
* In case of vector-input for IsMax, it just turns into IndexReduce call + further filler call
*/
auto indexMax = input->applyIndexReduce(indexreduce::IndexMax, dimensions);
//NativeOpExecutioner::execIndexReduceScalar(context, indexreduce::IndexMax, nullptr, input->getShapeInfo(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), extraParams, nullptr, scalarShape, special, nullptr);
//Nd4jLong maxIdx = -119;
//checkCudaErrors(cudaStreamSynchronize(*stream));
//cudaMemcpyAsync(&maxIdx, special, sizeof(Nd4jLong), cudaMemcpyDeviceToHost, *stream);
//checkCudaErrors(cudaStreamSynchronize(*stream));
int targetIdx = 0;
if (input->ordering() == 'c' || input->ordering() == 'f' && indexMax->e<Nd4jLong>(0) * shape::stride(input->getShapeInfo())[input->rankOf() - 1] >= input->lengthOf())
targetIdx = indexMax->e<Nd4jLong>(0);
else
targetIdx = indexMax->e<Nd4jLong>(0) * shape::stride(input->getShapeInfo())[input->rankOf() - 1];
dim3 launchDims(1, 512, 1024);
BUILD_SINGLE_SELECTOR(zType, fillIsMaxGeneric, (launchDims, stream, output->specialBuffer(), output->lengthOf(), targetIdx), LIBND4J_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "Legacy IsMax(...) failed");
//delete[] scalarShape;
delete indexMax;
} else {
Nd4jLong* hostYShapeInfo = nullptr;
Nd4jLong* hostTShapeInfo = nullptr;
int* dimension = nullptr;
int dimensionLength = dimensions.size();
std::vector<int> copy(dimensions);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), copy.data(), copy.size());
auto indexMaxArr = input->applyIndexReduce(indexreduce::IndexMax, dimensions);
//indexMaxArr->printIndexedBuffer("Index max!!!");
// we call for IMax on specified dimension
//NativeOpExecutioner::execIndexReduce(context, indexreduce::IndexMax, nullptr, input->getShapeInfo(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), extraParams, nullptr, hostTShapeInfo, special, hostYShapeInfo, const_cast<int*>(dimensions.data()), (int)dimensions.size(), nullptr, nullptr);
//DEBUG_KERNEL(stream, opNum);
dim3 launchDims(256, 256, 16384);
dimension = (int *) manager.replicatePointer(dimensions.data(), dimensions.size() * sizeof(int));
// at this point, all IMax indexes are gathered, and we execute filler
BUILD_SINGLE_SELECTOR(zType, fillDimensionalIsMaxGeneric, (launchDims, stream, indexMaxArr->specialBuffer(), output->specialBuffer(), output->specialShapeInfo(), packZ.specialShapeInfo(), dimension, dimensionLength, packZ.specialOffsets()), LIBND4J_TYPES);
manager.synchronize();
delete indexMaxArr;
}
}
void ismax(nd4j::LaunchContext * context, const NDArray *input, NDArray *output, const std::vector<int>& dimensions) {
BUILD_SINGLE_SELECTOR(input->dataType(), ismax_, (context, input, output, dimensions), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void ismax_, (nd4j::LaunchContext * context, const NDArray *input, NDArray *output, const std::vector<int>& dimensions), LIBND4J_TYPES);
}
}
}