cavis/libnd4j/include/ops/declarable/helpers/cuda/activations.cu

589 lines
23 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 19.04.2018
// @author raver119@gmail.com
//
#include <op_boilerplate.h>
#include <ops/declarable/helpers/activations.h>
#include <ShapeUtils.h>
#include <numeric>
#include <PointersManager.h>
namespace nd4j {
namespace ops {
namespace helpers {
///////////////////////////////////////////////////////////////////
template<typename X, typename Y>
__global__ void preluCuda(const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz) {
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Y*>(vy);
auto z = reinterpret_cast<X*>(vz);
__shared__ Nd4jLong xzLen, totalThreads, *sharedMem;
__shared__ int xzRank, yRank;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
xzLen = shape::length(xShapeInfo);
totalThreads = gridDim.x * blockDim.x;
xzRank = shape::rank(xShapeInfo);
yRank = shape::rank(yShapeInfo);
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
Nd4jLong* coords = sharedMem + threadIdx.x * xzRank;
for (int i = tid; i < xzLen; i += totalThreads) {
shape::index2coords(xzRank, xShapeInfo + 1, i, xzLen, coords);
const auto xzOffset = shape::getOffset(0, xShapeInfo + 1, xShapeInfo + xzRank + 1, coords, xzRank);
const auto xVal = x[xzOffset];
if(xVal < 0) {
for (uint j = 0; j < yRank; ++j)
if(yShapeInfo[j + 1] == 1)
coords[j + 1] = 0;
z[xzOffset] = xVal * y[shape::getOffset(0, yShapeInfo + 1, yShapeInfo + yRank + 1, coords + 1, yRank)];
}
else
z[xzOffset] = xVal;
}
}
///////////////////////////////////////////////////////////////////
template<typename X, typename Y>
linkage void preluCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz) {
preluCuda<X, Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz);
}
///////////////////////////////////////////////////////////////////
void prelu(nd4j::LaunchContext * context, const NDArray& input, const NDArray& alpha, NDArray& output) {
PointersManager manager(context, "prelu");
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (input.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = input.rankOf() * sizeof(Nd4jLong) * threadsPerBlock + 128;
const auto xType = input.dataType();
const auto yType = alpha.dataType();
NDArray::prepareSpecialUse({&output}, {&input, &alpha});
BUILD_DOUBLE_SELECTOR(xType, yType, preluCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), alpha.getSpecialBuffer(), alpha.getSpecialShapeInfo(), output.getSpecialBuffer()), LIBND4J_TYPES, FLOAT_TYPES);
NDArray::registerSpecialUse({&output}, {&input, &alpha});
manager.synchronize();
}
///////////////////////////////////////////////////////////////////
template<typename X, typename Y>
__global__ linkage void preluBPCuda(const void *vIn, const Nd4jLong *inShapeInfo,
const void *vAlpha, const Nd4jLong *alphaShapeInfo,
const void *vdLdO, const Nd4jLong *dLdOShapeInfo,
void *vdLdI, const Nd4jLong *dLdIShapeInfo,
void *vdLdA, const Nd4jLong *dLdAShapeInfo) {
const auto in = reinterpret_cast<const X*>(vIn);
const auto alpha = reinterpret_cast<const Y*>(vAlpha);
const auto dLdO = reinterpret_cast<const Y*>(vdLdO);
auto dLdI = reinterpret_cast<Y*>(vdLdI);
auto dLdA = reinterpret_cast<Y*>(vdLdA);
__shared__ Nd4jLong inLen, totalThreads, *sharedMem;
__shared__ int inRank, alphaRank;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
inLen = shape::length(inShapeInfo);
totalThreads = gridDim.x * blockDim.x;
inRank = shape::rank(inShapeInfo);
alphaRank = shape::rank(alphaShapeInfo);
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
Nd4jLong* coords = sharedMem + threadIdx.x * inRank;
for (int i = tid; i < inLen; i += totalThreads) {
shape::index2coords(inRank, inShapeInfo + 1, i, inLen, coords);
const auto inOffset = shape::getOffset(0, inShapeInfo + 1, inShapeInfo + inRank + 1, coords, inRank);
const auto dLdOOffset = shape::getOffset(0, dLdOShapeInfo + 1, dLdOShapeInfo + inRank + 1, coords, inRank);
const auto dLdIOffset = shape::getOffset(0, dLdIShapeInfo + 1, dLdIShapeInfo + inRank + 1, coords, inRank);
const auto xVal = in[inOffset];
const auto grO = dLdO[dLdOOffset];
if(xVal < 0) {
for (uint j = 0; j < alphaRank; ++j)
if(alphaShapeInfo[j + 1] == 1)
coords[j + 1] = 0;
const auto alphaOffset = shape::getOffset(0, alphaShapeInfo + 1, alphaShapeInfo + alphaRank + 1, coords + 1, alphaRank);
const auto dLdAOffset = shape::getOffset(0, dLdAShapeInfo + 1, dLdAShapeInfo + alphaRank + 1, coords + 1, alphaRank);
dLdI[dLdIOffset] = grO * alpha[alphaOffset];
nd4j::math::atomics::nd4j_atomicAdd<Y>(&dLdA[dLdAOffset], static_cast<Y>(grO * xVal));
}
else
dLdI[dLdIOffset] = grO;
}
}
//////////////////////////////////////////////////////////////////////////
template<typename X, typename Y>
__host__ linkage void preluBPCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vIn, const Nd4jLong *inShapeInfo, const void *vAlpha, const Nd4jLong *alphaShapeInfo, const void *vdLdO, const Nd4jLong *dLdOShapeInfo, void *vdLdI, const Nd4jLong *dLdIShapeInfo, void *vdLdA, const Nd4jLong *dLdAShapeInfo) {
preluBPCuda<X, Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vIn, inShapeInfo, vAlpha, alphaShapeInfo, vdLdO, dLdOShapeInfo, vdLdI, dLdIShapeInfo, vdLdA, dLdAShapeInfo);
}
//////////////////////////////////////////////////////////////////////////
void preluBP(nd4j::LaunchContext* context, const NDArray& input, const NDArray& alpha, const NDArray& dLdO, NDArray& dLdI, NDArray& dLdA) {
dLdA.nullify();
PointersManager manager(context, "preluBP");
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (input.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = input.rankOf() * sizeof(Nd4jLong) * threadsPerBlock + 128;
const auto xType = input.dataType();
const auto zType = alpha.dataType();
NDArray::prepareSpecialUse({&dLdI, &dLdA}, {&input, &alpha, &dLdO});
BUILD_DOUBLE_SELECTOR(xType, zType, preluBPCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), alpha.getSpecialBuffer(), alpha.getSpecialShapeInfo(), dLdO.getSpecialBuffer(), dLdO.getSpecialShapeInfo(), dLdI.getSpecialBuffer(), dLdI.getSpecialShapeInfo(), dLdA.getSpecialBuffer(), dLdA.getSpecialShapeInfo()), LIBND4J_TYPES, FLOAT_TYPES);
NDArray::registerSpecialUse({&dLdI, &dLdA}, {&input, &alpha, &dLdO});
manager.synchronize();
}
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ void softMaxForVectorCuda(const void *vx, const Nd4jLong *xzShapeInfo, void *vz) {
// logic of this kernel is based on assumption gridDim = 1
const auto x = reinterpret_cast<const T*>(vx);
auto z = reinterpret_cast<T*>(vz);
__shared__ Nd4jLong len;
__shared__ int numOfIters;
__shared__ T* shmem;
if (threadIdx.x == 0) {
extern __shared__ char shared[];
shmem = reinterpret_cast<T*>(shared);
len = shape::length(xzShapeInfo);
numOfIters = (len + blockDim.x - 1) / blockDim.x; // ceil (len / blockDim.x)
}
__syncthreads();
T temp = -DataTypeUtils::max<T>(); // set start value to compare with at first iteration, FIXME: what if T is unsigned ??
// ************ evaluate max element in input array x ************ //
for (int i = 0; i < numOfIters; ++i) {
const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x;
if(elemIdx < len) {
const Nd4jLong offset = shape::getIndexOffset(elemIdx, xzShapeInfo, len);
shmem[threadIdx.x] = (threadIdx.x != 0) ? x[offset] : nd4j::math::nd4j_max<T>(x[offset], temp); // take into account max element evaluated on previous iteration and stored in temp
}
else
shmem[threadIdx.x] = -DataTypeUtils::max<T>(); // FIXME: what if T is unsigned ??
__syncthreads();
for (int s = blockDim.x / 2; s > 0; s /= 2) {
if(threadIdx.x < s)
shmem[threadIdx.x] = nd4j::math::nd4j_max<T>(shmem[threadIdx.x], shmem[threadIdx.x + s]);
__syncthreads();
}
temp = shmem[0]; // save max value calculated at current iteration
}
const T max = temp;
temp = 0;
// ************ evaluate value of exp(x[offset] - max) per each element, store it to shared memory shmem ************ //
// at the same evaluate sum of exponents, sum will be stored in shmem[0]
for (int i = 0; i < numOfIters; ++i) {
const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x;
if(elemIdx < len) {
const Nd4jLong offset = shape::getIndexOffset(elemIdx, xzShapeInfo, len);
z[offset] = nd4j::math::nd4j_exp<T, T>(x[offset] - max);
shmem[threadIdx.x] = (threadIdx.x != 0) ? z[offset] : (z[offset] + temp); // take into account sum element evaluated on previous iteration and stored in temp
}
else
shmem[threadIdx.x] = 0;
__syncthreads();
for (int s = blockDim.x / 2; s > 0; s /= 2) {
if(threadIdx.x < s)
shmem[threadIdx.x] += shmem[threadIdx.x + s];
__syncthreads();
}
temp = shmem[0]; // save sum calculated at current iteration
}
// ************ evaluate z[offset] / sum ************ //
for (int i = 0; i < numOfIters; ++i) {
const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x;
if(elemIdx >= len) continue;
const Nd4jLong offset = shape::getIndexOffset(elemIdx, xzShapeInfo, len);
z[offset] /= shmem[0];
}
}
///////////////////////////////////////////////////////////////////
template <typename T>
linkage void softMaxForVectorCudaLauncher(const cudaStream_t* stream, const void *vx, const Nd4jLong *xzShapeInfo, void *vz) {
softMaxForVectorCuda<T><<<1, MAX_NUM_THREADS, MAX_NUM_THREADS * sizeof(T) + 512, *stream>>>(vx, xzShapeInfo, vz);
}
//////////////////////////////////////////////////////////////////////////
void softmax(nd4j::LaunchContext * context, const NDArray& input, NDArray& output, const int dimension) {
if(!input.isActualOnDeviceSide()) input.syncToDevice();
const int rank = input.rankOf();
if(input.isVector()) {
if(rank == 1 || input.sizeAt(dimension) != 1) {
BUILD_SINGLE_SELECTOR(input.dataType(), softMaxForVectorCudaLauncher, (context->getCudaStream(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), output.getSpecialBuffer()), FLOAT_TYPES);
input.tickReadDevice();
}
else
output = 1.;
}
else {
auto maxAlongDim = const_cast<NDArray&>(input).reduceAlongDims(reduce::Max, {dimension}, true);
(input - maxAlongDim).applyTransform(transform::Exp, &output); // output contains exponents temporarily
auto sumAlongDim = output.reduceAlongDims(reduce::Sum, {dimension}, true);
output /= sumAlongDim;
input.tickReadDevice();
}
PointersManager manager(context, "helpers::softmax");
manager.synchronize();
output.tickWriteDevice();
}
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ void logSoftMaxForVectorCuda(const void *vx, const Nd4jLong *xzShapeInfo, void *vz) {
// logic of this kernel is based on assumption gridDim = 1
const auto x = reinterpret_cast<const T*>(vx);
auto z = reinterpret_cast<T*>(vz);
__shared__ Nd4jLong len;
__shared__ int numOfIters;
__shared__ T* shmem;
if (threadIdx.x == 0) {
extern __shared__ char shared[];
shmem = reinterpret_cast<T*>(shared);
len = shape::length(xzShapeInfo);
numOfIters = (len + blockDim.x - 1) / blockDim.x; // ceil (len / blockDim.x)
}
__syncthreads();
T temp = -DataTypeUtils::max<T>(); // set start value to compare with at first iteration, FIXME: what if T is unsigned ??
// ************ evaluate max element in input array x ************ //
for (int i = 0; i < numOfIters; ++i) {
const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x;
if(elemIdx < len) {
const Nd4jLong offset = shape::getIndexOffset(elemIdx, xzShapeInfo, len);
shmem[threadIdx.x] = (threadIdx.x != 0) ? x[offset] : nd4j::math::nd4j_max<T>(x[offset], temp); // take into account max element evaluated on previous iteration and stored in temp
}
else
shmem[threadIdx.x] = -DataTypeUtils::max<T>(); // FIXME: what if T is unsigned ??
__syncthreads();
for (int s = blockDim.x / 2; s > 0; s /= 2) {
if(threadIdx.x < s)
shmem[threadIdx.x] = nd4j::math::nd4j_max<T>(shmem[threadIdx.x], shmem[threadIdx.x + s]);
__syncthreads();
}
temp = shmem[0]; // save max value calculated at current iteration
}
const T max = temp;
temp = 0;
// ************ evaluate value of exp(x[offset] - max) per each element, store it to shared memory shmem ************ //
// at the same time evaluate sum of exponents, sum will be stored in shmem[0]
for (int i = 0; i < numOfIters; ++i) {
const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x;
if(elemIdx < len) {
const Nd4jLong offset = shape::getIndexOffset(elemIdx, xzShapeInfo, len);
z[offset] = nd4j::math::nd4j_exp<T, T>(x[offset] - max);
shmem[threadIdx.x] = (threadIdx.x != 0) ? z[offset] : (z[offset] + temp); // take into account sum element evaluated on previous iteration and stored in temp
}
else
shmem[threadIdx.x] = 0;
__syncthreads();
for (int s = blockDim.x / 2; s > 0; s /= 2) {
if(threadIdx.x < s)
shmem[threadIdx.x] += shmem[threadIdx.x + s];
__syncthreads();
}
temp = shmem[0]; // save sum calculated at current iteration
}
// ************ evaluate log(z[offset] / sum) ************ //
for (int i = 0; i < numOfIters; ++i) {
const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x;
if(elemIdx >= len) continue;
const Nd4jLong offset = shape::getIndexOffset(elemIdx, xzShapeInfo, len);
z[offset] = nd4j::math::nd4j_log<T,T>(z[offset] / shmem[0]);
}
}
///////////////////////////////////////////////////////////////////
template <typename T>
linkage void logSoftMaxForVectorCudaLauncher(const cudaStream_t* stream, const void *vx, const Nd4jLong *xzShapeInfo, void *vz) {
logSoftMaxForVectorCuda<T><<<1, MAX_NUM_THREADS, MAX_NUM_THREADS * sizeof(T) + 512, *stream>>>(vx, xzShapeInfo, vz);
}
//////////////////////////////////////////////////////////////////////////
void logSoftmax(nd4j::LaunchContext * context, const NDArray& input, NDArray& output, const int dimension) {
if(!input.isActualOnDeviceSide()) input.syncToDevice();
const int rank = input.rankOf();
if(input.isVector()) {
if(rank == 1 || input.sizeAt(dimension) != 1) {
BUILD_SINGLE_SELECTOR(input.dataType(), logSoftMaxForVectorCudaLauncher, (context->getCudaStream(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), output.getSpecialBuffer()), FLOAT_TYPES);
input.tickReadDevice();
}
else
output = 0.;
}
else {
auto maxAlongDim = const_cast<NDArray&>(input).reduceAlongDims(reduce::Max, {dimension}, true);
(input - maxAlongDim).applyTransform(transform::Exp, &output); // output contains exponents temporarily
auto sumAlongDim = output.reduceAlongDims(reduce::Sum, {dimension}, true);
output /= sumAlongDim;
output.applyTransform(transform::Log);
input.tickReadDevice();
}
PointersManager manager(context, "helpers::logSoftmax");
manager.synchronize();
output.tickWriteDevice();
}
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ linkage void softMaxDerivForVectorCuda(const void *vx, const Nd4jLong *xzShapeInfo, void *vz) {
// logic of this kernel is based on assumption gridDim = 1
const auto x = reinterpret_cast<const T*>(vx);
auto z = reinterpret_cast<T*>(vz);
__shared__ Nd4jLong len;
__shared__ int numOfIters;
__shared__ T* shmem;
if (threadIdx.x == 0) {
extern __shared__ char shared[];
shmem = reinterpret_cast<T*>(shared);
len = shape::length(xzShapeInfo);
numOfIters = (len + blockDim.x - 1) / blockDim.x; // ceil (len / blockDim.x)
}
__syncthreads();
T temp = -DataTypeUtils::max<T>(); // set start value to compare with at first iteration, FIXME: what if T is unsigned ??
// ************ evaluate max element in input array x ************ //
for (int i = 0; i < numOfIters; ++i) {
const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x;
if(elemIdx < len) {
const Nd4jLong offset = shape::getIndexOffset(elemIdx, xzShapeInfo, len);
shmem[threadIdx.x] = (threadIdx.x != 0) ? x[offset] : nd4j::math::nd4j_max<T>(x[offset], temp); // take into account max element evaluated on previous iteration and stored in temp
}
else
shmem[threadIdx.x] = -DataTypeUtils::max<T>(); // FIXME: what if T is unsigned ??
__syncthreads();
for (int s = blockDim.x / 2; s > 0; s /= 2) {
if(threadIdx.x < s)
shmem[threadIdx.x] = nd4j::math::nd4j_max<T>(shmem[threadIdx.x], shmem[threadIdx.x + s]);
__syncthreads();
}
temp = shmem[0]; // save max value calculated at current iteration
}
const T max = temp;
temp = 0;
// ************ evaluate value of exp(x[offset] - max) per each element, store it to shared memory shmem ************ //
// at the same evaluate sum of exponents, sum will be stored in shmem[0]
for (int i = 0; i < numOfIters; ++i) {
const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x;
if(elemIdx < len) {
const Nd4jLong offset = shape::getIndexOffset(elemIdx, xzShapeInfo, len);
z[offset] = nd4j::math::nd4j_exp<T, T>(x[offset] - max);
shmem[threadIdx.x] = (threadIdx.x != 0) ? z[offset] : (z[offset] + temp); // take into account sum element evaluated on previous iteration and stored in temp
}
else
shmem[threadIdx.x] = 0;
__syncthreads();
for (int s = blockDim.x / 2; s > 0; s /= 2) {
if(threadIdx.x < s)
shmem[threadIdx.x] += shmem[threadIdx.x + s];
__syncthreads();
}
temp = shmem[0]; // save sum calculated at current iteration
}
// ************ evaluate (z[offset] / sum) and derivative z[offset] = z[offset] * (1 - z[offset]) ************ //
for (int i = 0; i < numOfIters; ++i) {
const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x;
if(elemIdx >= len) continue;
const Nd4jLong offset = shape::getIndexOffset(elemIdx, xzShapeInfo, len);
z[offset] /= shmem[0];
z[offset] *= (1.f - z[offset]); // derivative
}
}
///////////////////////////////////////////////////////////////////
template <typename T>
linkage void softMaxDerivForVectorCudaLauncher(const cudaStream_t* stream, const void *vx, const Nd4jLong *xzShapeInfo, void *vz) {
softMaxDerivForVectorCuda<T><<<1, MAX_NUM_THREADS, MAX_NUM_THREADS * sizeof(T) + 512, *stream>>>(vx, xzShapeInfo, vz);
}
///////////////////////////////////////////////////////////////////
void softmaxDerivative(nd4j::LaunchContext * context, const NDArray& input, NDArray& output, const int dimension) {
if(!input.isActualOnDeviceSide()) input.syncToDevice();
const int rank = input.rankOf();
int temp;
if(shape::isCommonVector(input.getShapeInfo(), temp)) {
BUILD_SINGLE_SELECTOR(input.dataType(), softMaxDerivForVectorCudaLauncher, (context->getCudaStream(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), output.getSpecialBuffer()), FLOAT_TYPES);
input.tickReadDevice();
}
else {
auto maxAlongDim = const_cast<NDArray&>(input).reduceAlongDims(reduce::Max, {dimension}, true);
(input - maxAlongDim).applyTransform(transform::Exp, &output); // output contains exponents temporarily
auto sumAlongDim = output.reduceAlongDims(reduce::Sum, {dimension}, true);
output /= sumAlongDim;
output *= (1.f - output); // derivative
input.tickReadDevice();
}
PointersManager manager(context, "helpers::softmaxDerivative");
manager.synchronize();
output.tickWriteDevice();
}
template <typename T>
linkage void thresholdRelu_(NDArray const& input, double threshold, NDArray& output) {
auto routine = LAMBDA_T(_x, threshold) {
return _x > (T)threshold ? _x: (T)0.f;
};
const_cast<NDArray&>(input).applyLambda(routine, &output);
}
void thresholdRelu(nd4j::LaunchContext * context, NDArray const& input, double threshold, NDArray& output) {
BUILD_SINGLE_SELECTOR(input.dataType(), thresholdRelu_, (input, threshold, output), FLOAT_TYPES);
}
template <typename T>
linkage void thresholdReluDerivative_(NDArray* input, double theta, NDArray* dLdO, NDArray* output) {
auto derivative = LAMBDA_TT(_x, grO, theta) {if (_x > theta) return grO; else return static_cast<T>(0); };
input->applyPairwiseLambda(dLdO, derivative, output);
}
void thresholdReluDerivative(nd4j::LaunchContext * context, NDArray* input, double threshold, NDArray* dLdO, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), thresholdReluDerivative_, (input, threshold, dLdO, output), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void thresholdReluDerivative_, (NDArray* input, double threshold, NDArray* dLdO, NDArray* output), FLOAT_TYPES);
BUILD_DOUBLE_TEMPLATE(template void preluCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz), LIBND4J_TYPES, FLOAT_TYPES);
BUILD_DOUBLE_TEMPLATE(template void preluBPCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vIn, const Nd4jLong *inShapeInfo, const void *vAlpha, const Nd4jLong *alphaShapeInfo, const void *vdLdO, const Nd4jLong *dLdOShapeInfo, void *vdLdI, const Nd4jLong *dLdIShapeInfo, void *vdLdA, const Nd4jLong *dLdAShapeInfo), LIBND4J_TYPES, FLOAT_TYPES);
BUILD_SINGLE_TEMPLATE(template void softMaxForVectorCudaLauncher, (const cudaStream_t* stream, const void *vx, const Nd4jLong *xzShapeInfo, void *vz), FLOAT_TYPES);
BUILD_SINGLE_TEMPLATE(template void softMaxDerivForVectorCudaLauncher, (const cudaStream_t* stream, const void *vx, const Nd4jLong *xzShapeInfo, void *vz), FLOAT_TYPES);
}
}
}